Подводные лодки
Содержание:
- Гордость и трагедия К-3
- Силовая установка атомной подводной лодки: реактор, турбина и электродвигатель
- Нынешнее время
- Первая подлодка, сумевшая потопить корабль
- Послевоенные дизель-электрические подводные лодки
- Подлодка Дреббеля — проект для английского короля
- Силовая установка подводного ракетоносца
- Советский «Кит»
- Подлодка, впервые использованная в военных целях
- Принцип действия субмарины
- Корабль проекта 955а апкр «Князь Владимир»
- Подводные лодки Второй мировой войны
- Арктические охотники проектов 945 «Барракуда»
Гордость и трагедия К-3
По понятным причинам первой в Советском Союзе атомной подводной лодке пришлось быть не только объектом для испытаний различных технических нововведений для атомного флота. Ей довелось на своей стальной шкуре проверять возможности ядерных субмарин. Уже в 1959 году она начала регулярные плавания подо льдами – сначала под кромкой, а потом и под серьезным паковым льдом, в итоге дойдя до Северного полюса.
Это был третий дальний поход лодки К-3, состоявшийся 11-21 июля 1962 года. Прежде всего экипажу лодки предстояло подтвердить, что она и подобные ей корабли способны на длительные походы подо льдами. Кроме того, советским морякам предстояло пройти точку Северного полюса в подводном положении и подняться из-подо льда на поверхность. Все задачи были выполнены успешно, за 178 часов лодка прошла в подводном положении 1294 мили и трижды – 15, 18 и 19 июля – всплывала почти точно на полюсе. Это было не просто достижение: таким образом советские подводники подтвердили, что арктические льды не станут препятствием для атомных ракетных подлодок. А это означало, что при необходимости нанести ракетный удар можно и оттуда, существенно увеличив ударную дальность ракет. Таким образом, восстанавливался паритет, нарушенный в марте 1959 года, когда первое в мире всплытие на полюсе совершила американская лодка «Скейт».
Одними успехами служба К-3 «Ленинский комсомол», конечно, не ограничивалась. И хотя печальный счет авариям на советских атомных субмаринах открыла не она, а первый атомный ракетоносец К-19, события 8 сентября 1967 года привели к самым тяжелым на тот момент последствиям. Лодка уже заканчивала боевую службу в Норвежском море, когда в первых двух отсеках случился пожар, унесший жизни 39 моряков. Пострадал и остальной экипаж, когда, чтобы не допустить взрыва торпед, командир приказал уравнять давление в отсеках, и из первых двух внутрь лодки хлынул отравленный продуктами горения воздух. В итоге лодке пришлось возвращаться на базу в надводном положении. Позднее в ходе следствия выяснилось, что причиной трагедии стала то ли жадность, то ли глупость кого-то из рабочих, во время планового ремонта заменившего медную прокладку на гидравлической системе высокого давления на паронитовую (смесь асбеста с пластиком).
Несмотря на периодические проблемы, связанные с тем, что лодка эксплуатировалась в тяжелейших условиях, К-3 оставалась в боевом составе флота до октября 1987 года – почти три десятилетия! За это время она шесть раз выходила на боевые службы и за 14 тысяч ходовых часов прошла в общей сложности почти 129 тысяч миль, то есть почти шесть раз обогнула Землю по экватору. После того как подлодку окончательно списали, она долгое время ожидала решения своей участи. Из первого советского подводного атомохода хотели сделать музей, подобно тому, как стал музеем атомный ледокол «Ленин», но у Минобороны долгое время не было на это средств. И лишь осенью 2020 года было окончательно решено, что подлодка «Ленинский комсомол» перейдет на вечный прикол в Кронштадт, где станет главным элементом Музея военно-морской славы. Она это заслужила.
Силовая установка атомной подводной лодки: реактор, турбина и электродвигатель
Базовый принцип работы атомного реактора
Главный агрегат, отличающий атомную от дизельной лодку — реактор. В зависимости от его типа, может варьироваться тип привода.
В типичном двигателе с ядерным реактором охлажденная вода под давлением попадает внутрь корпуса реактора, содержащего ядерное топливо. Нагретая вода выходит из реактора, превращается в пар и вращает лопасти турбины.
Вал турбины подключается к валу электродвигателя через редуктор для более эффективного преобразования энергии в электрическую.
В свою очередь, вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Одновременно с этим часть электроэнергии запасается в бортовых аккумуляторах.
Рабочий отсек АПЛ
Переход энергии молекул пара в кинетическую энергию лопаток приводит к конденсации пара обратно в воду, которая вновь поступает в реактор.
Нынешнее время
Сейчас подводных авианосцев нет, что в принципе неудивительно. Размеры современных истребителей, бомбардировщиков и разведчиков почти полностью исключают возможность их запуска с борта субмарин, даже очень крупных.
Еще в 2010 году стало известно о разработке конструкторским бюро Skunk Works беспилотника Cormorant, способного стартовать с борта субмарины «Огайо» из подводного положения.
Из шахты БПЛА будет не «выстреливаться», как ракета, а скорее всплывать. Как только он окажется на поверхности, включатся реактивные двигатели, и аппарат взлетит прямо с воды. Выполнив свою задачу, он сможет вернуться в точку встречи с подлодкой и опуститься обратно на морскую поверхность c помощью парашюта. Затем дрон «утянут» обратно, используя трос.
Огромное количество БПЛА, запускаемых с борта субмарин, могут стать серьезной головной болью для вражеского флота, особенно если их научат нести ударное вооружение.
В то же время идея выглядит дорогой, рискованной и технически сложной. К слову, за последние годы новой информации о разработке Cormorant почти не поступало.
Примечательно, что в советские годы проект создания подводного авианосца действительно существовал. В 1937 году разрабатывали проект 41а, который планировали оснащать гидросамолетом «Гидро-1». Самолет мог развивать скорость до 183 км/ч, его подготовка к полету должна была занимать примерно пять минут. Но проект так и не реализовали.
Первая подлодка, сумевшая потопить корабль
Американцы и здесь стали первопроходцами. Первая подлодка, применённая в бою с успешным результатом, была создана человеком по имени Хорас Ханли. И наименована она была в честь него — «Ханли». Эту подлодку использовал флот конфедератов во время Гражданской войны в Штатах 1861–1865 гг.
Субмарина «Ханли» была, конечно, гораздо совершенней «Черепахи». Гребной винт-движитель вращался здесь при помощи коленчатого вала, на который воздействовали семь матросов. А управлялась подлодка командиром, у которого было своё отдельное место. Вооружена «Ханли» была миной, укреплённой на шесте на самом краю судна. Также здесь были две башенки с люками, из которых можно было наблюдать за окружающей обстановкой, входить и выходить членам экипажа.
Подлодка «Ханли» была рассчитана на 8 человек
В атаку «Ханли» отправилась 17 февраля 1864 года. Целью подлодки был находящийся в прибрежной акватории Чарльстона шлюп «Хаусатоник» с водоизмещением 1240 тонн. Шлюп располагался в восьми километрах от береговой линии.
Экипажу «Ханли» под руководством Джорджа Диксона удалось атаковать корабль. Он за несколько минут ушёл на дно, а находившиеся на нём моряки были вынуждены спасаться на шлюпках. Затем подлодка подала сигнал о своём возвращении, погрузилась в воду и пропала.
Только в 2000 году подлодку с телами погибших подняли со дна, благодаря чему эксперты даже смогли установить, из-за чего погиб её экипаж. Причиной стала ударная волна, распространившаяся от взрыва мины. Таким образом, «Хаусатоник» стал первым кораблём, потопленным субмариной, а моряки, находившиеся в «Ханли», — первыми погибшими в реальном сражении подводниками.
«Ханли» подняли со дна в 2000 году — она довольно хорошо сохранилась
Послевоенные дизель-электрические подводные лодки
По окончании Второй мировой войны развитие подводных лодок происходило под сильным влиянием достижений германского флота. Германский Кригсмарине успел разработать весьма эффективные подводные аппараты, но, к счастью для союзников, поставить их на вооружение и использовать по назначению уже не удалось.
Боевая субмарина проекта 877 (тип «Варшавянка») ВМФ России
Советские конструкторы на базе германской подводной лодки серии XXI разработали лодку проекта 613 водоизмещением 1350 т. Ее энергетическая установка состояла из двух дизелей и электродвигателей. Вооружение включало 4 носовых и 2 кормовых 533-мм торпедных аппарата. Под водой лодка развивала скорость хода до 13,1 узла, в надводном положении — до 18,3 узла. Командование ВМФ СССР планировало построить сразу 340 таких лодок. С 1950 по 1957 г. удалось изготовить 215 единиц, что стало рекордной цифрой серийного выпуска подводных лодок в отечественном кораблестроении.
Примерно тогда же в Советском Союзе была разработана более крупная лодка проекта 641. Эта субмарина водоизмещением 1950 т имела на вооружении сразу 10 торпедных аппаратов (6 носовых и 4 кормовых) калибра 533 мм. Боезапас составлял 22 торпеды или 32 мины. Всего было построено 75 таких подводных кораблей.
Советская подлодка проекта 641
Новые германские лодки проекта 212 оснащаются гибридной двигательной установкой. Под водой используются аккумуляторные батареи, а для плавания в надводном положении — традиционный дизель-генератор. Лодка имеет водоизмещение 1830 т. Под водой она может идти со скоростью до 20 узлов, скорость надводного хода — 14,2 узла. Вооружение состоит из 6 торпедных аппаратов.
Высоким спросом на мировых рынках вооружений пользуются советские/российские подводные лодки проекта 877 «Варшавянка» и аналогичные им лодки проектов 636 и 677.
Подводная лодка проекта 613 советских ВМС
По проекту 877 изготовлено около 50 лодок. Они имеют водоизмещение 3950 т и оснащены энергетической установкой мощностью 3750 л. с. Скорость подводного хода достигает 17 узлов, надводного — 10 узлов. Вооружение состоит из 6 торпедных аппаратов.
Следует отметить, что наряду с традиционным торпедным вооружением многие современные дизель-электрические подводные лодки имеют и ракетное вооружение, причем крылатые и противокорабельные ракеты запускаются из стандартных торпедных аппаратов.
Подводная лодка номер U-31 проекта 212 ВМФ Германии
С 1990 по 2003 г. было построено 6 дизель-электрических подводных лодок типа «Коллинз» — единственных типов подводных лодок ВМФ Австралии. Эти субмарины водоизмещением 3353 т — настоящие гиганты среди дизель-электрических «одноклассниц». Их вооружение составляет 6 носовых 533-мм торпедных аппаратов с боезапасом 22 торпеды. Вместо торпед могут использоваться ракеты «Гарпун» (боезапас 22 ракеты) или мины (44 штуки).
Таким образом, в течение полувека подводная лодка превратилась из плавсредства, способного лишь на непродолжительное время уходить под воду, в совершенный боевой корабль. Такое судно способно длительное время находиться под водой, перемещаться с высокой скоростью и поражать цели не только в море, но и на суше.
Субмарина типа «Коллинз» ВМФ Австралии
Подлодка Дреббеля — проект для английского короля
И отнюдь не один лишь Леонардо да Винчи грезил в стародавние времена о суднах, которые могут свободно плавать в подводных глубинах. Например, в 1578 году британский математик Уильям Боурн придумал свою модель подлодки и опубликовал в журнале её чертежи. Впрочем, эта конструкция могла лишь погружаться и всплывать в одном месте, а для преодолевания расстояний не годилась. К тому же Боурну, как и да Винчи, не суждено было воплотить в жизнь свои идеи, дальше чертежей дело снова не пошло.
Пожалуй, первой реальной подводной лодкой, опробованной на практике, можно назвать вёсельную конструкцию инженера голландского происхождения Корнелиуса Дреббеля. Он создал её в 1620 году для английского короля Якова I и британского флота. Эта маленькая одноместная подлодка была сделана из дерева, дополнительно обтянутого кожей. Причём Дреббель использовал наработки уже упомянутого выше Уильяма Боурна. Судно голландца могло погружаться в воду и всплывать обратно, а также двигаться на глубине примерно 4–5 метров (глубину погружения голландский изобретатель измерял ртутным барометром).
В 1622 году Дреббель соорудил новую лодку, в которую вмещалось уже целых четыре гребца и рулевой. Опыты с ней оказались вдохновляющими, поэтому по её шаблону Дреббель создал в 1624 году ещё более масштабное судно. Оно обладало продолговатой эллипсовидной формой, и его корпус, упроченный металлическими вставками, был рассчитан на двенадцать гребцов и трёх пассажиров. Есть свидетельства, что расстояние в две мили эта «подводная галера» прошла по течению Темзы со скоростью в три узла (5,5 километров в час).
Лодка Дреббеля, плывущая по Темзе
После смерти Иакова I, покровительствовавшего голландскому изобретателю, финансирование любых работ в сфере строительства подводных лодок было прекращено. Преемник Иакова, Карл I не считал нужным тратиться на это. А спустя восемь лет изобретатель умер и, к сожалению, не оставил подробных чертежей своих творений.
Есть две версии о том, как Дреббель добился того, чтобы лодка и люди в ней могли иметь доступ к воздуху под водой в течение нескольких часов. Одни исследователи говорят о трубах, выведенных на поверхность, которые теоретически могли бы обеспечивать людей воздухом. Имеется также версия (хотя она менее правдоподобна), что у Дреббеля была некая жидкость, превращавшая углекислый газ в кислород.
Современная 3D-модель лодки Дреббеля
Силовая установка подводного ракетоносца
На современных подводных лодках устанавливаются ядерные энергетические установки (ЯЭУ) четвертого поколения. Конструкция их, конечно, не разглашается, но известно, что мощность ядерного реактора около190 мегаватт. Кроме того на лодке установлены паропроизводящие и паротурбинные агрегаты.
Для движения субмарины, установлена малошумная водометная установка мощностью 50 тысяч лошадиных сил, питающаяся от паровой турбины.
Имеются так же и гребные винты, вращающиеся от электродвигателей, но они не являются основными, а используются в качестве подруливающих. Скорость АПЛ в надводном положении – 15 узлов (28 км/час), в подводном – 29 узлов (54 км/час). Это конечно несравнимо с самой быстрой АПЛ, лодкой К-162 проекта 661 (44,7 узла). Но у каждого свои задачи.
Тип корабля | РПКСН |
Обозначение проекта | 955 «Борей» |
Разработчик проекта | ЦКБ «Рубин» |
Классификация НАТО | Borei |
Скорость (надводная) | 15 узлов |
Скорость (подводная) | 29 узлов |
Рабочая глубина погружения | 400 м |
Предельная глубина погружения | 480 м |
Автономность плавания | 90 суток |
Экипаж | 107 человек, в том числе 55 офицеров |
Атомные реакторы появились на флоте сразу же, как только появилась такая возможность, уже через 4 года после того как построили первую АЭС в СССР. Строительство АПЛ набирает темпы, Потому, что альтернативы им пока нет. Необходимо срочно заменить ими субмарины прошлого, работающие на ДВС, которые еще в большом количестве стоят на вооружении ВМФ России.
Советский «Кит»
Проект пришлось срочно перерабатывать. В итоге лодка получила восемь носовых торпедных аппаратов с боезапасом в два десятка торпед. Среди них должны были быть и атомные: к тому времени их боевые части уже начали проходить испытания. А главным оружием лодки, как и планировалось, стала скорость. В Советском Союзе уже знали, что американские кораблестроители поместили новую энергетическую установку в корпус лодки, мало чем отличающийся от классических корпусов субмарин Второй мировой войны. Это существенно ограничивало их подводную скорость: у первой в мире атомной субмарины, «Наутилуса», она составляла 23 узла, у второй, «Сивулфа» – 20 узлов. Советские конструкторы сразу решили искать наиболее обтекаемую форму лодки нового типа. Поиски не были слишком долгими: как известно, самыми оптимальными формами для движения под водой обладают морские млекопитающие, в том числе киты. На них-то и стала похожа первая советская атомная субмарина, на испытаниях развившая подводную скорость в 28 узлов даже не на полном ходу. За свою форму, которую унаследовали и все последующие подлодки, первая атомная лодка получила у моряков уважительное прозвище «Кит».
Несмотря на множество проблем и сложностей, сопровождающих создание любого нового механизма, лодка К-3 пусть с опозданием, но была построена. Ее заложили 24 сентября 1955 года и спустили на воду два года спустя, а еще через год лодка вошла в состав ВМФ и впервые двинулась на атомном ходу. Основной и резервный экипажи первого атомохода, кстати, начали обучение в Обнинске еще в 1954 году. Чтобы моряки могли заранее изучить свой корабль, в их распоряжение предоставили не только первую в мире атомную электростанцию, но и специально построенный неподалеку от нее рабочий стенд с таким же реактором, как на подлодке. Кроме того, морякам приходилось проверять на себе и многие конструктивные и дизайнерские решения новой лодки, для чего строились деревянные макеты ее отсеков. И это позволило не только грамотно обустроить лодку, но и избежать многих проблем. Известен такой казус: рабочие места командира и штурмана в центральном посту были спроектированы так, что оба размещались спиной по курсу корабля, что для моряков попросту невозможно.
Строительство лодки и вся ее служба превратились в один длительный эксперимент, как это всегда бывает с кораблями, которые открывают новую эру. И прежде всего это касалось главной энергетической установки. Из трех вариантов, работу над которыми конструкторы начали по постановлению 1952 года – графитоводного, с жидкометаллическим носителем и классического водо-водяного, – в итоге выбрали третий вариант как наиболее проработанный. Но и с ним было немало хлопот и проблем, ведь все узлы и агрегаты строились и применялись впервые. Например, очень много проблем морякам доставляли парогенераторы первого контура, в которых циркулировала радиоактивная вода. На них постоянно появлялись микротрещины, из-за чего зачастую реактор нельзя было вывести на полную мощность, и лодка попросту не могла даже развить нормальную скорость. О том, что постоянные утечки в реакторном оборудовании вызывали повышенную радиоактивность воздуха на лодке, и говорить не приходится.
Подлодка, впервые использованная в военных целях
Такой подлодкой принято считать судно под названием «Черепаха», спроектированное и построенное американцем Дэвидом Бушнеллом. Кстати, этот американский инженер-изобретатель прославился ещё и тем, что придумал подводную часовую мину. Подлодка, по мнению Бушнелла, отлично подходила для того, чтобы доставлять это взрывное устройство к вражеским кораблям.
При создании «Черепахи» изобретателю пришлось ломать голову над большим числом проблем. Ему нужно было придумать, как сделать непроницаемый корпус, который выдерживал бы давление на глубине, как обеспечить подлодке контролируемое погружение, как сохранять её в устойчивом вертикальном положении под водой, куда поместить мину и так далее. Решая эти проблемы, Бушнелл даже сделал несколько новаций. К примеру, он оказался первым, кто догадался снабдить подлодку шноркелем и двухлопастным винтом (он играл роль движителя). Корпус «Черепахи», если смотреть в профиль — это две идентичных, соединённых между собой половинки, и каждая из них действительно напоминала панцирь черепахи (отсюда и название). Высота лодки была чуть больше двух метров, длина была равна 2,3 метрам, ширина — 0,9 метрам. Она была сделан из дуба, и все зазоры между ними были надёжно законопачены. Чтобы повысить характеристики влагонепроницаемости и прочности судна, корпус был покрыт смолой и вокруг него были закреплены стальные полоски.
Схематическое изображение «Черепахи» с человеком внутри
Воздуха в этой подлодке хватало только на полчаса. Она управлялась водителем, которому приходилось сидеть на сидении, похожем на велосипедное. В нижней части корпуса было расположено свинцовое грузило для придания лодке вертикальной устойчивости и отверстие для забора воды в балластную ёмкость во время погружения. Также здесь были помпы из латуни, которые в кратчайшие сроки загоняли воздух в эту же ёмкость — в результате лодка всплывала. Возле водителя и над ним располагались рукояти приводов винтов, благодаря которым судно могло двигаться вертикально и горизонтально, а также руль.
«Черепаха» также была оснащена целым рядом полезных устройств — компасом, глубиномером и вентилятором. Что касается 70-килограммовой мины, то она была здесь помещена в специальном отсеке под рулём.
«Черепаху» Бушнелл строил и испытывал в Сэйбруке — городке в штате Коннектикут. И лишь к весне 1776 года ему удалось довести свой проект до конца. После этого «Черепаху» тайно отправили в Нью-Йорк и отдали в распоряжение американского генерала Путнэма. Впрочем, применить её решились через несколько месяцев — в начале сентября. Управлять ей было поручено сержанту Эзре Ли.
Итак, 6 сентября 1776 года «Черепаху» втайне отбуксировали поближе к большому английскому флагману Eagle («Орёл»). Сержант Ли залез в субмарину и приготовился осуществить атаку. Он добрался до «Орла», но присоединить часовую мину к флагману не удалось. Он наткнулся на бугель и не сумел пробурить корпус. Ли в итоге просто бросил взрывное устройство и стал возвращаться обратно. Кроме того, когда он всплыл, ему пришлось отбиваться от английских маломерных судов. Кстати, эта мина, когда Ли уже был далеко, всё же взорвалась, но этот взрыв никому не принёс вреда.
Потопить британский корабль с помощью «Черепахи» попытались снова 8 октября. Для этого «Черепаху» на буксире стали подвозить к месту атаки на реке Гудзон. Но англичане проявили бдительность и, открыв огонь из пушек, уничтожили и субмарину, и корабль, который выполнял роль буксира.
Так выглядит воссозданная подлодка Дэвида Бушнелла
Принцип действия субмарины
Система погружения и всплытия подводной лодки включает в себя балластные и вспомогательные цистерны, а также соединительные трубопроводы и арматуру. Основной элемент здесь – это цистерны главного балласта, за счет заполнения водой которых погашается основной запас плавучести ПЛ. Все цистерны входят в носовую, кормовую и среднюю группы. Их можно заполнять и продувать по очереди или одновременно.
У подлодки есть дифферентные цистерны, необходимые для компенсации продольного смещения грузов. Балласт между дифферентными цистернами передувается при помощи сжатого воздуха или же перекачивается с помощью специальных помп. Дифферентовка – именно так называется прием, целью которого является «уравновешивание» погруженной ПЛ.
Атомные подлодки делят на поколения. Для первого (50-е) характерна относительно высокая шумность и несовершенство гидроакустических систем. Второе поколение строили в 60-е – 70-е годы: форма корпуса была оптимизирована, чтобы увеличить скорость. Лодки третьего больше, на них также появилось оборудование для радиоэлектронной борьбы. Для АПЛ четвертого поколения характерны беспрецедентно малый уровень шума и продвинутая электроника. Облик лодок пятого поколения прорабатывается в наши дни.
Важный компонент любой субмарины – воздушная система. Погружение, всплытие, удаление отходов – все это делается при помощи сжатого воздуха. Последний хранят под высоким давлением на борту ПЛ: так он занимает меньше места и позволяет аккумулировать больше энергии. Воздух высокого давления находится в специальных баллонах: как правило, за его количеством следит старший механик. Пополняются запасы сжатого воздуха при всплытии. Это долгая и трудоемкая процедура, требующая особого внимания. Чтобы экипажу лодки было чем дышать, на борту субмарины размещены установки регенерации воздуха, позволяющие получать кислород из забортной воды.
Корабль проекта 955а апкр «Князь Владимир»
12 июня 2020 года, в День России, в состав Военно-морского флота РФ официально был принят подводный ракетный крейсер «Князь Владимир». Субмарину стратегического назначения без преувеличений можно назвать уникальным подводным кораблем.
Основные технические и тактические преимущества субмарины
«Князь Владимир» — первый модернизированный «Борей». Если говорить по-простому — то это именно тот корабль, который хотели видеть проектанты и военные. Почему же так? Ответ простой. Для постройки трех первых подлодок использовались заделы от других подлодок; например, прочный корпус и оборудование, которое собиралось со складов. На головном ракетоносце проекта «Борей-А» — все по-другому: все новое и самое современное. От первых трех 955-х – подводных крейсеров «Юрий Долгорукий», «Александр Невский» и «Владимир Мономах» – новый ракетоносец отличается меньшей шумностью, более совершенными системами маневрирования и удержания на глубине, а также управлением оружием.
Атомная подлодка «Князь Владимир» построена по проекту 955А «Борей-А» и названа в честь князя Владимира, при котором произошло крещение Руси. Строили лодку долго: еще в 2009 году начались работы по созданию корпуса субмарины, но официальная церемония закладки лодки состоялась 30 июля 2012 года при участии президента России Владимира Путина. 17 ноября 2017 года «Князь Владимир» был спущен на воду и вот сейчас, спустя три года, принят в состав ВМФ, а конкретнее Северного флота России.
Подводный ракетный крейсер «Князь Владимир» — четвертая по счету атомная подлодка проекта «Борей». Понятно, что с каждым новым кораблем происходит определенное усовершенствование за счет внедрения технологий, которые не стоят на месте
Так, к безусловным достоинствам АПЛ «Князь Владимир» можно отнести хорошие маневренные качества, эффективную систему управления вооружением и, что очень важно для подводной лодки, невысокую шумность. Лодка может погружаться на глубину до 400 метров, а автономное плавание продолжать в течение трех месяцев
Экипаж субмарины, несмотря на ее внушительные габариты, составляет всего 107 человек. Однако управлять крейсером им будет не сложно (по крайней мере, так считают в командовании): на «Князе Владимире» установлена бортовая информационная управляющая автоматизированная система, существенно облегчающая выполнение любых задач в сфере управления подводным кораблем.
Вооружен ракетами «Булава»
Отдельно стоит сказать о вооружении «Князя Владимира». Оно включает в себя 6 торпедных аппаратов калибра 533 мм и 16 баллистических ракет «Булава». Последние, в свою очередь, несут по 6 ядерных боевых блоков индивидуального наведения, могут поражать цель на расстоянии 10 тысяч километров с вероятным отклонением всего на 120-350 метров. Для противника ракетные удары станут полной неожиданностью.
Основные характеристики
Водоизмещение (т): 25000;
Длина (м): 165;
Ширина (м): 18;
Осадка (м): 10;
Скорость полного хода (узлов): 28;
Автономность (сут.): 75;
Экипаж (чел.): 141;
Силовая установка: атомная.
Командиры:
- 2016 — н. в. — капитан 1-го ранга Дружин Владислав Валерьевич — 1 экипаж.
- 2017 — н. в. — капитан 1-го ранга Манин Александр Александрович — 2 экипаж.
Подводные лодки Второй мировой войны
К началу Второй мировой войны в составе флотов ведущих морских держав имелось следующее количество подводных лодок: Великобритания — 58, Германия — 57, США — 99, Франция — 77, Италия —105, Япония — 56. ВМФ СССР к началу Великой Отечественной войны располагал 212 субмаринами.
Американская дизель-электрическая подводная лодка «Пампанито» SS-383 класса «Валао»
Одним из новшеств, примененных на флоте в конце Второй мировой войны, стал изобретенный в Германии шноркель — устройство, позволяющее дизельным двигателям работать на глубине. Благодаря его использованию отпала необходимость всплывать для подзарядки батарей. Однако операторы британских и американских РЛС достаточно быстро научились засекать выступающую из воды головку шноркеля, так что радикального снижения потерь германских подводных лодок не произошло.
Основу советского подводного флота в годы Второй мировой войны составляли лодки типа Щ (подводное водоизмещение — 700 т, вооружение — 6 торпедных аппаратов). Их действия были весьма успешными, ни один другой тип кораблей в советском флоте не получил такого количества почетных званий и наград. Например, лодка Щ-317 под командованием капитан-лейтенанта Н. Мохова, действовавшая в южной части Балтийского моря, потопила 5 транспортов противника общим водоизмещением 46 000 т.
ВМФ СССР, в свою очередь, лишился во Второй мировой войне 102 подводных лодок.
88-мм орудие, установленное на германской лодке U-35
Во время Второй мировой войны появился самый многочисленный класс подводных лодок ВМФ США за всю историю. С 1942 по 1946 г. были выпущены 122 дизель-электрические подводные лодки класса «Балао» водоизмещением 2500 т. Основное вооружение составляли десять 533-мм торпедных аппаратов с запасом 24 торпеды; кроме того, на орудийной палубе располагались автоматические зенитные пушки калибра 40 или 20 мм. К этому классу принадлежала, например, лодка «Пампанито» под номером SS-383. Сейчас это корабль-музей, Национальный исторический памятник США.
В 1938—1943 гг. на японских судостроительных верфях было построено 20 подводных лодок типа 1-15 — самого многочисленного типа крейсерских субмарин японского ВМФ. Водоизмещение составляло 3654 т, вооружение — 6 носовых 533-мм торпедных аппаратов (боезапас 17 торпед), а также гидроплан. Все субмарины этого типа погибли в боях в 1942—1945 гг.
Советская лодка серии Щ — самая успешная субмарина ВМФ СССР
Самая крупносерийная партия подводных лодок в истории флота была построена для германского Кригсмарине. Субмарины типа VII были выпущены с 1935 по 1945 г. общей серией в 703 лодки. Они имели водоизмещение 871 т и относились к среднему классу. Лодки вооружались 4 носовыми и 1 кормовым торпедными аппаратами калибра 533 мм, боезапас составлял 14 торпед или 26 мин. Одна из лодок этого класса под номером U-995 окончательно была выведена из состава флота в 1965 г. и сейчас служит в качестве музейного корабля.
Во время Второй мировой войны с обеих сторон погибли 1123 подводные лодки (из 1978 принимавших участие, то есть более половины). Треть из них потоплена самолетами, треть — надводными кораблями, и только 6,5% уничтожено подводными лодками.
Подводная лодка U-995 типа VII германского Кригсмарине
За время войны германские, японские и итальянские подводные лодки потопили 2828 судов США, Англии, Франции, их союзников и нейтральных государств общей грузовместимостью 14,5 млн т (68% общих потерь судов союзников). В ответ субмарины союзников уничтожили транспорты противника общей грузовместимостью около 5,8 млн т. Кроме транспортов подводные лодки всех иностранных государств уничтожили 395 боевых кораблей: 75 подводных лодок, 17 авианосцев, 3 линкора, 32 крейсера, 122 эсминца и 146 других надводных кораблей.
Субмарина 1-19 типа 1-15 — самого многочисленного типа крейсерских подводных лодок японского Императорского флота
Советская корабельная пушка калибра 45 мм устанавливалась на боевые субмарины
Арктические охотники проектов 945 «Барракуда»
Последние цельнотитановые «убийцы авианосцев» советской разработки, переквалифицировавшиеся со временем в многоцелевые АПЛ, активно эксплуатирующиеся сегодня в Арктике.
Обладает поразительной прочностью корпуса, рассчитанную на всплытие в арктических водах из-под льда — фактически, «Барракуды» и её «дети» стали подводными атомными ледоколами.
Лодка этого типа К-276 «Краб» 11 февраля 1992 года в российских территориальных водах она столкнулась с американской подлодкой «Батон Руж» типа «Лос-Анджелес», после чего американскую лодку пришлось списать. А «Краб» продолжил службу.
О лодке известно чрезвычайно мало — специфика отрасли. Атомный реактор аналогичен используемому на «Акулах» и «Антеях», характеристики сходны, а шумность как на ультрасовременных лодках с водометами. И все.