Самые мощные аэс в мире, крупнейшие атомные электростанции

АЭС Касивадзаки-Карива (8212 МВт)

Самая крупная в мире атомная электростанция, возведенная в 1985 году, располагается в Японии в городе Касивадзаки. АЭС имеет 5 ядерных реакторов типа BWR (кипящий водо-водяной реактор) и 2 реактора типа ABWR (кипящие ядерные реакторы 3-го поколения), общая мощность которых составляет 8212 МВт. Это самый высокий показатель во всем мире. Именно на этой станции впервые были построены реакторы типа ABWR. Мощность одной только этой крупнейшей станции превосходит почти вдвое общую мощность всех рабочих АЭС, находящихся в Чехии или Индии, и более чем в 4 раза превосходит мощность АЭС в Венгрии, но из-за частых землетрясений Касивадзаки-Карива периодически приостанавливает свою работу для проведения восстановительных работ.

Запорожская

АЭС, находящаяся в городе Энергодар, Запорожская область, Украина. Располагается на одном из берегов Каховского водохранилища и гордо носит звание самой крупной атомной электростанции в Европе. Была введена в эксплуатацию в 1984, на строительство АЭС ушло 3 года.

Изначально проект предполагал наличие 4 энергоблоков, однако, позже в него внесли правки: было принято решение о добавлении еще 2-ух. На сегодня Запорожская АЭС располагает 6 работающими ядерными реакторами. Сооружение дает суммарную мощность 6000 МВт.

Каждый год Запорожская АЭС генерирует 40 млрд кВт⋅ч электроэнергии − это равно половина всей вырабатываемой с помощью атомных станций энергии страны.

«Гран-Кули», США

Эта крупнейшая американская ГЭС стоит на реке Колумбия в штате Вашингтон. Кроме него, она снабжает электроэнергией штаты Орегон, Айдахо, Монтана, Калифорния, Вайоминг, Колорадо, Нью-Мехико, Юта и Аризона. Немного тока достается и Канаде. Когда-то станция была крупнейшей мире по мощности — и даже два раза. Первый — с 1949 года по 1960. Потом ее одна за другой обошли несколько советских ГЭС, но в 1983 году Гранд-Кули вырывается вперед за счет расширения и увеличения мощностей. Через три года ее потеснила с первого места венесуэльская ГЭС «Гури». Окончательная стоимость со всеми достройками составила 730 миллионов долларов — около трех миллиардов по современным меркам.

Установленная мощность этой ГЭС после достройки составляет 6809 МВт. Для сравнения: крупнейшая из украинских станций, Запорожская АЭС, имеет мощность в 6000 МВт.

«Гури», Венесуэла

До 2000 года эта ГЭС носила имя Рауля Леона, президента Венесуэлы, при котором в 1963 году началось строительство. Сейчас она официально называется в честь Симона Боливара, национального героя страны и видного деятеля войны за независимость испанских колоний. Во многом именно ему Венесуэла обязана провозглашением независимости, а сегодня страна сильно зависит от ГЭС его имени. В 2013 году несколько штатов остались без света из-за пожара, возникшего в окрестностях «Гури». Она на две трети покрывает потребности Венесуэлы в электричестве и продает часть выработанного тока в Бразилию и Колумбию.

В плане ежегодной выработки — это уже другая лига. Сооружение в среднем производит 47 млрд кВт-ч в год — чуть-чуть больше намотала в прошлом году вся украинская промышленность.

За сутки станция вырабатывает количество энергии, эквивалентное 300 тысячам баррелей нефти. Установленная мощность «Гури» — 10235 МВт, а по объему резервуара она в разы превосходит любую гидроэлектростанцию мира — 136,2 триллиона литров. Это самый большой в Венесуэле пресноводный водоем и 11-е по величине озеро из созданных человеком, а сама станция была крупнейшей в мире с 1986 года по 1989.

Стоимость этой станции — отдельный вопрос. Посчитать ее точно — сложно, потому что строительство шло долго, а Венесуэла за это время пережила экономический кризис. Курс доллара к боливару менялся часто и сильно, а в последние годы строительства местная валюта дешевела ежедневно. EDELCA, одна из крупнейших венесуэльских компаний по производству электричества того времени, в 1994 году оценила стоимость начального этапа в 417 миллионов долларов, а заключительную фазу строительства — в 21,1 миллиарда непереводимых уже ни во что боливаров.

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

АЭС Палюэль (Франция)

Атомная электростанция Палюэль, расположенная примерно в 40 км от города Дьеп, Франция, в настоящее время является седьмой по величине АЭС в мире по чистой мощности.

Объект площадью в 160 га находится на Ла-Манше, откуда и использует воду для охлаждения.

Завод принадлежит и управляется компанией EDF и состоит из четырех реакторов с водой под давлением с общей установленной мощностью 5 528 МВт (1 382 МВт каждый) и чистой проектной мощностью 5 200 МВт (1300 МВт каждый).

Строительство атомной электростанции началось в 1977 году. Первые две части завода были подключены к сетке в 1984 году.

Третья и четвертая части были введены в эксплуатацию в 1985 году. Палуэль является второй по величине французской АЭС после Гравлина.

Касивадзаки-Карива

Самая мощная атомная электростанция в мире − Касивадзаки-Карива располагается в Касивадзаки, Япония. Работа сооружения начата в 1985 году и окончена через 8 лет.

На АЭС задействовано 7 реакторов, дающих суммарную мощность 8212 КВт.

На сегодня не установлено, в каком количестве она попала в море. Также произошел выход зараженной пыли за пределы атомной электростанции. Ущерб от природного катаклизма оценен в $12,5 млрд. Послебыли проведены работы по усилению сейсмоустойчивости сооружения. Блоки 7, 6 и 1 запущены в тестовом режиме в 2009 году, но ввиду землетрясения и аварии на Фукусиме-1, в 2011 их приостановили. Сегодня АЭС Касивадзаки-Карива продолжает работу.

Ои

Располагается на острове Хонсю, Япония. Строительство сооружения началось в 1972 году, а ввод в эксплуатацию произошел через 5 лет − в 1977.

Мощность электростанции − 4410 МВт, АЭС предполагает 4 одновременно действующих реактора, однако, на сегодня активны только 2.

После аварии на АЭС Фукусима-1 работа всех атомных электростанций Японии была остановлена, в том числе и реакторов Ои. Позже первый и второй из них снова ввели в эксплуатацию, но уже через 6 лет прекратили их работу из-за невозможности осуществить техническую модернизацию. На замену первому и второму пришли действующие третий и четвертый реакторы.

Таблица работы энергоблоков АЭС Ои

Энергоблок Вввод в эксплуатацию Закрытие
Ои-1 26.03.1979 01.03.2018
Ои-2 05.12.1979 01.03.2018
Ои-3 18.12.1991
Ои-4 02.02.1993

Другие крупнейшие АЭС мира

Второе место по мощности занимает канадская АЭС Брюс — 6 232 МВт. Ее построили в 1987 году на берегу озера Гурон в провинции Онтарио. От других АЭС она отличается поистине огромной занимаемой площадью — более 932 гектаров. У нее восемь действующих реакторов.

Третьей в мире по количеству вырабатываемой электроэнергии считается Запорожская АЭС (Украина). Ее производительность 6 000 МВт. Находится она возле Каховского водохранилища, неподалеку от города Энергодар. На крупнейшей в Европе АЭС работает 11,5 тысяч обслуживающего персонала.

На четвертом месте в мире находится АЭС Хануль в Южной Корее. Ее мощность — 5 900 МВт. Но это пока. В дальнейшем ее мощность запланировано увеличить до 8 700 МВт.

Самой мощной атомной электростанцией в России считают Балаковскую АЭС. Она находится в Саратовской области, в 8 км от города Балаково. Ее мощность — более 3 000 МВт, что примерно равняется пятой части всей энергии, которую вырабатывают все АЭС в стране. Станцию обслуживают 3 770 человек. Стабильное водоснабжение, необходимое для безаварийной работы водо-водяных энергетических реакторов, обеспечено замкнутой схемой, которая образована за счет возведения дамб на части Саратовского водохранилища. Расположение АЭС было выбрано с учетом санитарных зон, не требующих сноса расположенных поблизости населенных пунктов.

Со второй половины XX века атомные электростанции вырабатывают огромное количество дешевой электроэнергии, с помощью которой происходит улучшение технологий и качества жизни для большинства людей на нашей планете. Теперь стало ясно, что самая мощная АЭС в мире должна быть и самой надежной, сейсмоустойчивой и безопасной.

Чернобыльская трагедия

Сомнительное достижение, но Чернобыль возглавляет наш сегодняшний рейтинг.

Советское правительство предоставило подробный список инструкций для работников, которых следовало придерживаться, чтобы безопасно произвести тест. Но один из сменщиков решил пренебречь протоколом и неправильно выполнил последовательность при работе с сердечником.

Интенсивное тепло от сердечника привело к массивному выбросу пара, разрушило треть здания и выпустило смертельное количество радиоактивного материала в атмосферу, которая понесла облако в Азию и Европу. Первым группам пожарных пришлось буквально голыми руками бороться с радиоактивным сырьем и пожаром.

И по сей день расплавленная груда радиоактивного осадка лежит под ядром реактора. Если простоять рядом с ней 30 секунд, можно получить радиоактивные ожоги. Если постоять больше четырех минут, на жизнь останется всего несколько дней.

Пожарные, работавшие в районах выпавшего осадка, умерли от сильных радиационных ожогов в местном городе Припять. Их пожарные костюмы все еще лежат в подвале больницы, и комната, в которой они находятся, является одним из самых облученных мест в зоне отчуждения. Советское правительство направило более 500 000 спасателей бороться с аварией. Многие погибли, хоть и не сразу.

50 000 человек населения Припяти должны были эвакуировать, людям позволили взять только ценные вещи. Через девять месяцев Советский Союз запечатал реактор саркофагом из стали и бетона.

Хотя в этой области нельзя будет жить в течение ближайших 50 000 лет, правительство не закрывало станцию до начала 2000-х.

Даже сегодня трудно определить степень ущерба, нанесенного в результате аварии на Чернобыльской АЭС. Жертвы аварии по-прежнему страдают от высоких показателей рака щитовидной железы и врожденных дефектов. Впрочем, некоторые умудряются жить в зоне отчуждения.

По материалам Listverse

Калининская АЭС. Серийные ВВЭР-1000

Калининская АЭС

Переходим к трем АЭС с серийными гигаваттными блоками ВВЭР. Первая из них – Калининская АЭС с четырьмя блоками ВВЭР-1000. Расположена в Тверской области, возле города Удомля. Это самая близкая к Москве действующая АЭС – 350 км по прямой. Ее первые блоки заработали в 1984 и 1986 году, правда они не самой популярной серии ВВЭР-1000 – модификации В-338. Вторая очередь станции, с серийными ВВЭР-1000 наиболее популярной модификации В-320, были построены уже в 21-м веке – в 2004 и в 2011.

Калининская АЭС и вид на г. Удомля. Блоки 3 и 4 ближе к нам. Дальше — блоки 1 и 2.

Именно за их строительством я следил, когда учился на физтехе на физика-ядерщика. Тогда Россия строила не так много новых энергоблоков. Кстати, на Калининской АЭС мне довелось побывать в 2017 году. И поскольку это была первая крупная АЭС с четырьмя гигаваттными блоками на которой я был, то меня поразил именно масштаб самой станции, начиная с проходной – все же на ней работает более 3000 человек. Это реально огромное предприятие, которое производит около 3% всей электроэнергии страны. Близкая мне Белоярская АЭС куда компактнее, камернее и я бы даже сказал уютнее.

Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

Атомная электростанция (АЭС) – это ядерная установка для производства электрической энергии в заданных режимах и условиях применения, располагающаяся в пределах определенной проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом).

Отличие АЭС от иных видов электростанций заключается в том, что ее конструкция включает в себя ядерный реактор, являющийся ее основным компонентом. В качестве топлива в ней применяется уран-235.

АЭС располагается на территории нескольких зданий, в которых размещается комплекс сооружений, систем и оборудования, требуемых для обеспечения ее работы.

В главном корпусе АЭС находится реакторный зал, в котором располагаются:

– реактор,

– специальный бассейн, служащий для выдержки ядерного топлива,

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы, а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.

Нововоронежская АЭС. Сухопутная колыбель ВВЭР

Нововоронежская АЭС — вид с пруда-охладителя ночью

Как и Белоярская АЭС, это одна из старейших АЭС страны. Первый ее энергоблок заработал в том  же 1964 году, всего через полгода после пуска АМБ-1. Но в отличии Белоярской АЭС, где отрабатывали технологию канальных уран-графитовых реакторов с ядерным перегревом пара, а затем технологии быстрых реакторов, в Нововоронеже занимались и занимаются освоением другого направления – водо-водяных реакторов. Здесь были построены все первые, головные блоки энергетических реакторов ВВЭР мощностью от 210 МВт, 440, 1000 и сейчас 1200. Всего на этой АЭС построено 7 энергоблоков – максимальное количество на российских АЭС.

Первый в мире энергоблок с ВВЭР-1000 на Нововоронежской АЭС

В настоящее время из них работают 4. Это один ВВЭР-440, один ВВЭР-1000 и два первых в нашей стране и мире ВВЭР-1200. Получается, что каждый из этих реакторов – самый первый в своем роде. В том числе и нынешний флагманский продукт отечественной атомной промышленности – энергоблок с реактором ВВЭР-1200, которые активно приходят на замену старых блоков на АЭС в России и строится для зарубежных заказчиков. В России их уже построено 4, и в разной стадии строительства за рубежом еще более 10 штук. 

Первые в мире и нашей стране два ВВЭР-1200 на Нововоронежской АЭС

Подробно про водо-водяные реакторы я рассказывал в прошлой статье про Кольскую АЭС. Коротко повторю, что эти реакторы отличаются от канальных графитовых тем что в них нет ни графитовой кладки, ни каналов. Это более компактные реакторы, топливо которых находится внутри прочного толстостенного металлического корпуса. Водо-водяной в названии реактора означает, что вода выступает в нем и замедлителем нейтронов и теплоносителем, который отводит тепло от ядерного топлива. Это реакторы, работающие по двухконтурной схеме, т.е. вода в самом реакторе и первом контуре нагревается до большой температуры – более 300 градусов, но не кипит, т.к. находится при этом под давлением более 150 атмосфер (для чего мощный корпус и нужен). Тепло через теплообменник передается второму контуру, где уже вода кипит, пар идет на турбину, ну и дальше обычная схема. КПД таких установок около 32% и выше.

Такой же тип водо-водяных реакторов используется и на атомных подводных лодках в силу ряда преимуществ, в первую очередь более компактных размеров. Собственно, изначально он для них и разрабатывался, но потом вышел на сушу и прочно обосновался в мирной атомной энергетике.  Сейчас это самый популярный тип реактора в мире. Более чем на 80% энергоблоках АЭС в мире работают водо-водяные реакторы под давлением.

Курская АЭС

Курская АЭС — вторая АЭС с серийными РБМК, всего на 4 года моложе Ленинградской. Расположена в 40 км от Курска. Она могла стать одной из самых больших АЭС на территории России с шестью энергоблоками РБМК-1000. Но с 1977 по 1986 годы успели достроить и ввести в эксплуатацию лишь 4 (как и на Чернобыльской АЭС). После 1986 года строительство оставшихся двух энергоблоков заморозили. Причем, пятый блок был в очень высокой степени готовности. Его даже подумывали достроить вплоть до 2010-х, но в 2012 году от этой идеи окончательно отказались.

Энергоблоки Курской АЭС

Зато из-за почти полной идентичности и при этом полной радиационной чистоты, ведь на него даже не завозили ядерное топливо, этот пятый блок хорошо подходил для киносъемок фильмов про чернобыльскую аварию. Именно на нем проходили сьемки недавнего фильма Данилы Козловского. Кстати, знаменитый сериал Чернобыль от HBO снимали на другой АЭС с реакторами РБМК – Игналинской, в Литве.

Внутри реакторного зала пятого блока Курской АЭС-2. Фото Lana-Sator.livejournal.com

Сейчас идет строительство Курской АЭС-2. На замену первым двум реакторам РБМК строят два новых энергоблока с реакторами ВВЭР. Но это не обычные ВВЭР-1200, которые построили на других станциях – в Нововоронеже или ЛАЭС-2. Это новый проект ВВЭР-ТОИ — Типовой Оптимизированный и Информатизированный проект. Ранее он назывался ВВЭР-1300. Он чуть мощнее и должен быть более экономически эффективным. Возможно в будущем он придет на смену ВВЭР-1200.

Строительство Курской АЭС-2 с двумя ВВЭР-ТОИ

Кстати, два энергоблока Курской АЭС-2 – это на текущий момент единственные строящиеся в России энергоблоки АЭС, если не брать в расчет замороженную стройку Балтийской АЭС.

Пало-Верде

Атомная электростанция Пало-Верде находится в штате Аризона, США. Это самая мощная АЭС в Америке. Начала работу в 1985 году, строительство сооружения заняло 9 лет. Обеспечивает поступление электроэнергии в города с общим населением 4 млн человек.

Мощность АЭС − 3937 МВт, на ней задействовано 3 реактора. Важным является то, что для их охлаждения на Пало-Верде используют сточные воды близлежащих городов. Это связано с тем, что электростанция располагается посреди пустыни и является единственным сооружением такого типа, не находящемся вблизи естественных или искусственных водоемов.

«Три ущелья», Китай

Где еще могли построить сооружение, возведение которого потребовало переселения 1,3 миллиона человек — почти два Львова? Это было наиболее масштабное переселение в связи со строительством, сама станция — одно из крупнейших в мире сооружений любого назначения, ее плотина тоже входит в число самых больших. Стоило это все 27,6 миллиарда долларов. Строительство на реке Янцзы началось в 1992 году, а потом, с 2003 по 2012, агрегаты ГЭС вводили в эксплуатацию.

На «Трех ущельях» установлены 34 турбины общей мощностью в 22500 МВт — в полтора с лишним раза мощнее ближайшего преследователя, «Итайпу». По годовой выработке за 2016 год китайская станция, правда, немного уступила бразильско-парагвайской — 93,5 млрд кВт-ч. Дело тут не в конструкции или чем-то еще: просто Парана круче и работоспособнее Янцзы. Предполагалось, что сооружение будет покрывать 20% потребности Китая в электричестве, но потребление росло слишком быстро. В итоге «Три ущелья» не дают и двух процентов, но зато полностью покрывают годовой рост потребления. Кроме того, появление ГЭС со всей ее инфраструктурой улучшило условия судоходства в этой части реки — грузооборот вырос в десять раз.

С чего начиналась атомная энергетика

В 1949 году в СССР были успешно проведены экспериментальные взрывы атомной бомбы. В процессе экспериментов осуществлялась выработка плутония, для нужд ядерного реактора производился обогащенный уран. Разработки в данной области позволили вплотную подойти к решению задачи, чтобы использовать ядерную энергию в мирных целях. Тогда же приступили к созданию плана первой установки.

На тот момент в Советском Союзе уже накопился определенный опыт по созданию промышленных реакторов, производящих материал для атомных бомб. Они имели существенное отличие от энергетических установок, поскольку для выработки электроэнергии требовалось разогреть теплоноситель до высокой температуры. Для этого понадобились совершенно другие материалы и сплавы, способные работать в экстремальных условиях, не поглощающие большого количества нейтронов, устойчивые к коррозии и т.д. Эти проблемы были определены еще до проектирования, и вся сложность заключалась лишь во времени.
Строительство 1-й АЭС велось с 1950 по 1954 годы в городе Обнинске. Пуск первой в мире атомной электростанции и введение в действие произошел 27.06.1954 года. В первоначальной конструкции оборудования использовался реактор АМ-1, мощность у которого составляла всего 5 МВт. Данный объект смог непрерывно прослужить целых 48 лет и в апреле 2002 года работа в плановом порядке прекратилась по причине физического износа и невозможности ее дальнейшего использования с точки зрения экономики.

Первые энергетические сооружения на ядерном топливе проложили путь для строительства новых, более совершенных станций, использующих возможности атома в мирных целях. Накоплен большой объем инженерно-технических и научных разработок, позволивших успешно проектировать новые сооружения. Первая в мире атомная электростанция была своеобразной кузницей для подготовки и обучения кадров, научных сотрудников и технического персонала, которые нашли свое место на других, вновь созданных объектах.

Паломарский инцидент с водородной бомбой

С водородными бомбами тоже бывают инциденты.

17 января 1966 года двенадцать бомбардировщиков B-52 везли водородные бомбы в страны союзников в Европе в рамках военных учений под названием Operation Chrome Dome. Цель состояла в том, чтобы подготовиться к первому столкновению с Советским Союзом во время «холодной войны».

Один из бомбардировщиков столкнулся с танкером KC-135, который пытался заправиться в воздухе над южным побережьем Испании. Авария привела к тому, что оба самолета накрыло топливом, и они вспыхнули и взорвались. Хотя несколько человек смогли безопасно парашютировать на землю, в результате взрыва погибло семеро. Обломки самолетов упали на Паломарес, приморскую фермерскую деревню на юге Испании.

Местное население не осознавало, что обломки распространят радиоактивный плутоний по всему району, загрязняя землю и водоснабжение всего города. Три бомбы немедленно восстановили. Четвертую не могли найти три месяца, аж до 7 апреля 1966 года.

Впервые в истории американские военные показали общественности ядерное оружие. Проверка населения выявила некоторые следы радиации, и показатели рака были аналогичны тем, которые наблюдались в других городах в этой области. С момента обнаружения загрязнения в почве в 2006 году, американское правительство, наконец, согласилось помочь Испании в восстановительном процессе. Вопрос не удалось решить сразу.

Конструкция и действие ядерной установки

Сердцем любой установки является ядерный реактор, от которого напрямую зависит, как работает атомная электростанция. Внутри него происходит распад тяжелых ядер на более мелкие фрагменты. Находясь в состоянии сильного возбуждения, они начинают испускать нейтроны и другие частицы.

Воздействие нейтронов приводит к новым делениям, после чего их становится еще больше и в результате возникают непрерывные самоподдерживающиеся расщепления, известные как цепная реакция. Данный процесс осуществляется с выделением большого количества энергии, которая является основной целью всей работы АЭС и определяет ее мощность.

Примерно 85% от общего количества энергии высвобождается за очень короткий промежуток времени от начала реакции. Остальные 15% дает радиоактивный распад продуктов деления после излучения ими нейтронов. После распада атомы приходят в более стабильное состояние, а сам процесс продолжается и по окончании деления.

Типовой ядерный реактор включает в себя следующие компоненты:

  • Обогащенный уран и другое ядерное топливо.
  • Теплоноситель, с помощью которого выводится энергия, полученная при работе реактора.
  • Регулировочные стержни.
  • Замедлитель нейтронов.
  • Защитная оболочка против излучения.

В активную зону установки помещены ТВЭЛ – тепловыделяющие элементы, содержащие ядерное топливо. Они скомпонованы в кассеты, по нескольку десятков элементов. Внутри каждой кассеты имеются каналы, по которым циркулирует теплоноситель. С помощью ТВЭЛ можно регулировать уровень мощности реактора.

Принцип такой регулировки заключается в следующем:

  • Топливный стержень должен иметь определенную критическую массу, по достижении которой и начинается ядерная реакция.
  • Каждый отдельный стержень имеет массу, не дотягивающую до критической. Реакция будет происходить, если в активную зону будут помещены все стержни.
  • Путем погружения и извлечения топливных стержней, реакцию можно сделать управляемой, в том числе регулировать мощность.
  • Когда значение массы превышает критическое, происходит выброс нейтронов топливными веществами. Далее наступает столкновение выброшенных частиц с атомами.
  • Все это приводит к образованию нестабильного изотопа. Его распад наступает сразу же, с выделением тепла и энергии в виде гамма-излучения.

Во время столкновения кинетическая энергия частиц переходит друг к другу и число распадов еще больше увеличивается со скоростью геометрической прогрессии. При отсутствии управления такая реакция происходит мгновенно и сопровождается сильным взрывом, в реакторе этот процесс постоянно контролируется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector