Вселенная — зарождение, развитие, структура и состав

Строение галактик

Галактики – это связанные системы из сотен миллиардов звёзд, планет, астероидов, комет. Вращаются вокруг одного центра. Они бывают шаровидные, спиральные, с перемычкой, карликовые. Наша галактика называется Млечный путь, относится к спиральным с перемычкой. Ближайшие к ней – Туманность Андромеды, Большие и Малые Магеллановы облака. Точное количество галактик неизвестно.
Но кроме видимых объектов пространство наполняет межзвёздный газ, космическая пыль, электромагнитное излучение, тёмная материя. Межзвёздный газ прозрачен, очень разрежен. Концентрируется менее 1 атома водорода на 1 см3. Космическая пыль может быть видимой, некоторые частицы имеют размер 0,1 мм.
Тёмная материя – недавно открыта, поэтому мало изучена. Она невидима, не обнаруживается приборами, не излучает. Только вступает в гравитационное взаимодействие с видимыми объектами и излучением.

Звёзды

Звезда – это небесное тело, в ядре которого происходят термоядерные реакции. Из-за этого оно светится. По цвету бывают голубые, жёлтые, красные или белые. Масса звёзд может составлять от 0,05 до 80 солнечной массы. Наше Солнце – это тоже звезда, относится к жёлтым карликам. С Земли можно увидеть около 3 тысяч звёзд, многие из них имеют названия.
Есть одиночные, двойные и тройные. Некоторые собираются в группы – звёздные скопления. Объединяются звёзды в системы – группу тел, связанных гравитацией. Они называются галактиками.

Схематическое изображение Земли и более крупных астрономических объектов, в которые она входит.

Планетные системы

Это объединение планет, их спутников, астероидов и других небесных тел, которые вращаются вокруг звёзды, например, Солнечная система.

  • Планета – это небесное тело, обычно вращается вокруг звёзды.
  • Спутник – небесный объект, которое вращается вокруг другого большего по размеру.
  • Астероиды – твёрдые тела, движутся по орбите. Их диаметр от 1 км и больше.
  • Метеороиды – самые маленькие небесные тела. Они твёрдые и располагаются свободно в межзвёздном пространстве.
  • Комета – это небольшой космический объект, вращающееся вокруг звёзды. Представляет собой ядро, которое состоит изо льда и каменистых частиц. Под действием излучения звёзд оно испаряется. Поэтому ядро окружено облаком газов – комой и имеет хвост.

Изучать строение Вселенной очень интересно. Несмотря на наличие мощных телескопов, спутников, человек может увидеть только её малую часть.

Самая большая звезда

Когда речь идет о самой большой звезде, тут все непросто. Большинство звезд являются переменными — это значит, что они изменяют свою яркость, радиус, и эффективную температуру на протяжении почти всей жизни. До 2020 года самой большой звездой считалась UY Scuti (UY Щита) — это гипергигантская звезда, чей радиус примерно в 1 700 раз больше, чем у Солнца. Если бы кто-нибудь поместил UY Щита в центр Солнечной системы, ее край простирался бы сразу за орбиту Юпитера. Газ и пыль, исходящие от звезды, простирались бы еще дальше — за орбиту Плутона.

Изображение предоставлено: Philip Park

Это яркий красный сверхгигант или гипергигант, член звездного скопления Стивенсон 2. Также это один из самых ярких холодных сверхгигантов. Его радиус составляет 2 158 солнечных, а излучаемый свет сравним с тем, который испускает 440 000 Солнц.

Структура Вселенной и ее размеры

На протяжении многих тысячелетий человечество считало, что Вселенная вечна и неизменна. Данная теория господствовала во всем в мире вплоть до начала ХХ столетия. Колоссальный переворот в науке о космическом пространстве произошел в 20-е годы прошлого века, благодаря таким ученым как Эйнштейн, Фридман и Хаббл. Именно они выдвинули предположения и доказали, что Вселенная – это целая система, которая живет своей жизнью и способна изменяться во времени, то есть расширяться или сжиматься.

В структуре Вселенной выделяют несколько уровней организации, каждый из которых отличается масштабом объектов:

Практически все космические тела в необъятной Вселенной формируют группы. Звезды группируются парами или входят в звездные скопления. В таких скоплениях могут содержаться десятки или даже сотни таких светил. Исключением считается Солнце, так как у него нет «двойника».

Двойная звезда Источник

Следующий уровень – галактики. Они бывают неправильной, линзовидной, спиральной и эллиптической формы. Вот только почему существует такая классификация, ученые еще не нашли ответ. В пределах одного галактического пространства есть черные дыры, межзвездный газ, темная материя, двойные звезды, пыль, электромагнитное излучение. Астрономы предполагают, что во Вселенной существуют сотни миллионов галактик.

Спиральная Галактика  

Небольшое скопление галактик формируют Местную группу. Данный уровень организации считается одной из самых крупных и устойчивых структур. Все объекты в системе скопления галактик удерживаются гравитационной силой и еще каким-то фактором. Что это за фактор ученые пока не знают, но уверенны, что одной лишь силы гравитации для поддержания стабильности недостаточно. Скопление, в которое входит Млечный путь, Треугольник и Андромеда, включает еще 31 галактическую систему.

Скопление галактик в Персее Источник

Сверхскопление галактик – в составе такой структуры десятки или даже сотни галактических систем или их скоплений. Гравитационные силы здесь уже не такие сильные, поэтому сверхскопления движутся вместе с расширяющейся Вселенной.

Сверхскопление Волопаса Источник

На последнем уровне во Вселенной находятся ячейки, или пузыри. Их границы образуют сверхскопления галактик. Между этими структурами расположены пустотные области, которые получили название войды. Изучение войд, как и самых отдаленных частей Вселенной, происходит с помощью современных телескопов, одним из которых является телескоп Хаббла. В течение длительного времени, астрономы наблюдают за процессами, происходящими в космосе, изучают скопления и расположение звезд, после чего делаются определенные расчеты, строятся модели Вселенной, звездные карты и т.д.

Войд Волопаса Источник

Все структуры Вселенной являются уникальными и таинственными. Человечество уже гораздо лучше понимает, как устроено космическое пространство. Но с каждым новым открытием у ученых появляются и новые вопросы, ответы на которое порой не так легко найти.

Изучая размеры Вселенной, астрономы могут говорить только о ее видимой части, которую научно называют Метагалактикой. Чем больше сведений и знаний ученые получают о ней, тем больше становятся ее границы, причем они расширяются абсолютно во всех направлениях. Это говорит о сферической форме Вселенной.

Принято считать, что возраст Вселенной составляет 13,8 млрд. лет. Именно столько времени прошло с момента Большого Взрыва. Однако это только предположения, полученные в результате многолетней работы специалистов. Они основаны на наблюдениях и расчетах, но утверждать со 100% уверенностью, что Взрыв действительно был, нельзя. На сегодняшний день теория Большого Взрыва является общепринятой, так как именно она объясняет многие процессы, происходящие в космическом пространстве.Учитывая скорость света, ученые предполагают, что размеры Вселенной составляют также 13,8 млрд. световых лет. Скорей всего эта цифра не совсем точная, так как с момента зарождения пространство Вселенной все время расширяется. Некоторая его часть движется со сверхсветовой скоростью, из-за чего многие объекты навсегда останутся вне зоны видимости человека. 

Математическая модель Вселенной Источник

Как можно представить модель Вселенной и этапы ее развития?

Модель Вселенной можно представить в виде решетки, у которой точки пересечения прутьев это солнца. Эта воображаемая решетка постоянно вибрирует (как бы дышит) и увеличивается в размерах (развивается). Вселенная растет, расцветает и в определенный момент, когда достигает высшего этапа развития, начинает разрушаться.

Исчезают не отдельные планеты, а сразу солнечные системы целиком. Поскольку галактики связаны между собой определенным ритмом развития, при разрушении одной из них начинается распад и соседних галактик. Этот процесс очень медленный, для человеческого восприятия времени может пройти много миллиардов лет.

Но для вселенского разума время измеряется совершенно иначе. Когда большая часть галактик в космическом пространстве разрушается, поступает сигнал (или команда) и создается новая Вселенная, изначально более развитая, чем предыдущая. Таким образом, происходит эволюция Вселенных, и процесс этот бесконечен.

Из чего состоит Вселенная?

Все, кто интересуется устройством Вселенной знают, что она всего на 5% состоит из привычной нам материи. Еще примерно четверть составляет темная материя – загадочная субстанция, о которой не так много известно, так как она недоступна прямому наблюдению. Оставшиеся две трети приходятся на еще более таинственную темную энергию, которая заставляет нашу Вселенную расширяться со все возрастающей скоростью.

Так, команда астрофизиков из Физико-математического института им. Кавли (IPMU) установила, что в реликтовом излучении наблюдаются признаки нарушения так называемой пространственной четности – одного из фундаментальных свойств мироздания, которое не предсказывает Стандартная модель. По мнению авторов исследования, темная материя и темная энергия нарушают принцип четности, что может указывать на существование «новой физики».

В ходе нового исследования физики решили удалить из уравнения темную энергию.

Еще одним «звоночком» в пользу пересмотра современных представлений о Вселенной стала работа южноафриканских ученых 2019 года. В ней исследователи и вовсе предположили, что темной энергии не существует, так как сама гипотеза о разлетающихся на бешеной скорости галактиках основана на «ложных догадках и некорректных расчетах». Как отмечают авторы научной работы, опубликованной в журнале Physical Review Letters, чтобы доказать это, понадобится гораздо больше данных наблюдения за реликтовым излучением.

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Современная космология

Космологией называется раздел астрономии, который занимается изучением происхождения и развития Вселенной в целом. С научной точки зрения, Вселенная является системой, обладающей особыми свойствами.

Еще в древности человечество задавалось вопросами о происхождении Вселенной. Но тогда весь процесс мироздания объяснялся деятельностью богов. Со временем, когда влияние церкви на человека уменьшилось, ученые постарались объяснить эволюцию Вселенной с помощью физических и химических законов. Существенный прорыв в изучении космического пространства произошел после изобретения телескопа. Тогда астрономы узнали, что численность звезд на небе исчисляется многочисленными миллионами. В середине XIX века с помощью прибора определили расстояние до ближайших звезд.

Немного позже создали шкалу измерений расстояний до более отдаленных космических объектов. В ее основу легли наблюдения за особым типом переменных звезд – цефеид и измерения красного смещения спектров астрономических тел. Благодаря анализу спектральных смещений было установлено, что Вселенная расширяется, то есть промежутки между скоплениями галактик постоянно увеличиваются.

Активное развитие современная космология получила в ХХ веке. В это время Эйнштейн выдвигает несколько теорий относительно Вселенной, которые в дальнейшем он смог доказать на примере уравнения гравитационного поля. Все исследования ученого, так или иначе, были связаны с общей теорией относительности. Эйнштейн рассматривал Вселенную как однородное, стационарное и изотропное пространство. Другими словами она имела определенные границы и положительную кривизну. На этом развитие основ современной космологии не закончилось. 

Александр Фридман в 1922 г выдвинул мнение, что расширение Вселенной происходит из начальной сингулярности.

Предположение Фридмана было подтверждено после открытия Эдвином Хабблом космологического красного смещения. Это привело к возникновению теории Большого Взрыва, актуальность которой сохраняется и сегодня. Все вышеперечисленные открытия и представления составляют основу современной космологии.

Кроме этого современной научной космологии удалось установить приблизительный возраст Вселенной. По мнению специалистов, он составляет 13,8 миллиардов лет.

С чего началось мироздание?

Сегодня трудно в это поверить, но огромное космическое пространство 14 млрд лет было всего лишь точкой. Небольшой шар состоял из плотного и горячего протовещества. В один момент, эта “точка” взорвалась и мельчайшие элементы разлетелись. Эта гипотеза происхождения Вселенной называется Теорией Большого Взрыва. Это наиболее логичное предположение, из-за чего является основным.

Все частицы, которые были образованы в результате взрыва, удалились от эпицентра происшедшего и со временем начали взаимодействовать между собой. С рассеянной материи сформировались сгустки, которые впоследствии преобразовались в звезды. Под воздействием центробежных и гравитационных сил были образованы галактики.

Процесс расширения Вселенной и формирование новых “уплотнений” происходит ежесекундно. Именно поэтому, ученым трудно указать границы мироздания.

Вселенная Фридмана

Фридман допускал, что Вселенная имеет совершенно одинаковый вид во всех направлениях и данное условие характерно для всех ее точек. Исходя из этого и учитывая общую теорию относительности, ученый дал понять, что не стоит ожидать от Вселенной стационарности.

Если посмотреть на небосвод, можно увидеть светящуюся полосу – нашу Галактику Млечный путь. Сфокусировав свой взгляд на более отдаленных галактических системах, видно, что в разных частях космического пространства их число будет примерно одинаковым. Исходя из этого, можно говорить об относительной однородности Вселенной.

Модель Вселенной Фридмана была одной из самых удачных. Кроме того, она соответствовала наблюдениям Хаббла. Однако в западных странах о ней услышали только в 1935 г, после того, как подобные модели были разработаны Говардом Робертсоном и Артуром Уокером. Несмотря на то, что Вселенная Фридмана имела только одну модель, на ее основе можно построить еще три других:

  • расширение Вселенной по Фридману настолько медленное, что силы притяжения между галактическими пространствами еще сильнее замедляют его, а со временем вообще останавливают. После этого галактики устремляются навстречу друг к другу, то есть запускается процесс сжатия космического пространства.Расширяющая Вселенная Фридмана достигает определенного максимума, а потом начинает снова возвращаться в начальную точку;
  • вторая космологическая модель Вселенной Фридмана гласит, что расширение космического пространства происходит с незначительной скоростью. Ее хватает лишь для того, чтобы не начался обратный процесс сжатия. В данном предположении расширение начинается с начальной точки, но при этом оно всегда растет. Скорость процесса замедляется, но никогда не останавливается;
  • расширение космического пространства происходит с огромной скоростью. Она настолько велика, что гравитационные силы никогда не смогут остановить данный процесс, разве что только слегка замедлить его. Разделение галактик начинается также с определенного нулевого расстояния.

Анализируя все вышесказанное, можно сделать вывод: модель Фридмана рассказывает, что Вселенная не бесконечна в космическом пространстве, но само пространство безгранично. В результате сильных гравитационных сил, пространство искривляется и замыкается, то есть напоминает чем-то сферическую форму Земного шара. Если человек путешествует по поверхности планеты в одном и том же направлении, он никогда не встретит препятствие, которое не смог бы преодолеть, кроме того, он никогда не упадет «с края Земли». Рано или поздно он просто вернется в точку, с которой начинал свое путешествие. Примерно такое же пространство изображено в модели нестационарной Вселенной Фридмана.

“Звездные дома”: классификация и особенности

Точная информация о видах и границах галактик стала известна после проведенных исследований Эдвином Хабллом. Астрофизик предложил следующую классификацию:

  1. Спиральные. Это наиболее распространенные “звездные дома”. Они представлены в виде своеобразных спиралей, которые собраны вокруг ядра либо исходят от галактической “перемычки”. Наш Млечный путь относится к этому виду. Еще одним популярным представителем спиральных галактик является наша “соседка” — Андромеда. Она стремительно мчится по направлению к нам, из-за чего оба звездных дома могут столкнуться.
  2. Эллиптические. Они обладают нестандартной формой. На вселенских просторах их много, но они не выразительны из-за отсутствия космической пыли и звездного газа. В “эллипсах” находятся исключительно звездные скопления.
  3. Неправильные. Объекты, которые относятся к этому типу, не имеют четких границ и определенной формы. В их составе находятся облака газа и космическая пыль. Такие “звездные дома” могут поглощаться более крупными объектами.

Состав Вселенной и другие вопросы

Большинство исследователей полагают, что состав вселенной на удивление сложно определить, ведь помимо темной энергии, пространство также заполнено темной материей. (Обычная видимая материя составляет всего 5% Вселенной, в то время как темная материя и темная энергия составляют 26% и 69% соответственно). Другими словами, астрономы на самом деле не понимают, из чего состоит около 95% Вселенной.

Все потому, что понять и измерить темную материю и темную энергию больше чем сложно. Представьте, что вы бродите по темной комнате и время от времени прикасаетесь к слону, которого никогда не видели и отчаянно пытаетесь понять что это такое и как он выглядит. Исходя из этой аналогии, темная комната размером со Вселенную, и вместо того, чтобы прикасаться к слону, астрономы могут видеть только его воздействие на другие объекты.

Материя во Вселенной распределена не равномерно

Но точные свойства темной энергии и темной материи остаются загадкой, тем более что темная энергия, похоже, не более чем случайность. Некоторые физики, как пишет портал Astronomy.com, полагают, что темная энергия является причиной ускоренного расширения Вселенной и произошло около 5-6 миллиардов лет назад, с тех являясь доминирующей силой.

Самое простое объяснение темной энергии состоит в том, что это – внутренняя энергия самого пространства. Альберт Эйнштейн первоначально ввел такую концепцию, чтобы учесть плоскую вселенную, когда излагал теорию относительности (ОТО). Так называемая космологическая постоянная Эйнштейна – это сила отталкивания, которая противодействует силе притяжения гравитации, чтобы Вселенная не сжималась и не расширялась.

Сегодня никто не знает, будет ли Вселенная расширяться вечно или этот процесс когда-нибудь закончится

Но, в конце концов, Эйнштейн отказался от своей концепции после того, как Эдвин Хаббл наблюдал расширение Вселенной. Нобелевская премия по сверхновым в 1990-х годах возродила космологическую постоянную и в конечном итоге связала ее с темной энергией. И хотя астрономы не могут видеть темную материю напрямую, они могут определить ее местоположение по наблюдениям. Распределение темной материи (пурпурного цвета) в сверхскоплении Abell 901/902 показано на этой фотографии путем объединения изображения сверхскопления в видимом свете и карты области темной материи.

Из чего состоит Вселенная?

Все, кто интересуется устройством Вселенной знают, что она всего на 5% состоит из привычной нам материи. Еще примерно четверть составляет темная материя – загадочная субстанция, о которой не так много известно, так как она недоступна прямому наблюдению. Оставшиеся две трети приходятся на еще более таинственную темную энергию, которая заставляет нашу Вселенную расширяться со все возрастающей скоростью.

Так, команда астрофизиков из Физико-математического института им. Кавли (IPMU) установила, что в реликтовом излучении наблюдаются признаки нарушения так называемой пространственной четности – одного из фундаментальных свойств мироздания, которое не предсказывает Стандартная модель. По мнению авторов исследования, темная материя и темная энергия нарушают принцип четности, что может указывать на существование «новой физики».

В ходе нового исследования физики решили удалить из уравнения темную энергию.

Еще одним «звоночком» в пользу пересмотра современных представлений о Вселенной стала работа южноафриканских ученых 2019 года. В ней исследователи и вовсе предположили, что темной энергии не существует, так как сама гипотеза о разлетающихся на бешеной скорости галактиках основана на «ложных догадках и некорректных расчетах». Как отмечают авторы научной работы, опубликованной в журнале Physical Review Letters, чтобы доказать это, понадобится гораздо больше данных наблюдения за реликтовым излучением.

История изучения структуры Вселенной

Разнообразные галактики, открытые в рамках проекта SINGS.

Впервые об идее крупномасштабной структуры Вселенной задумался выдающийся астроном Уильям Гершель. Именно ему принадлежат такие открытия как обнаружение планеты Уран и двух ее спутников, двух спутников Сатурна, открытие инфракрасного излучения и идея о движении Солнечной системы сквозь космическое пространство. Самостоятельно сконструировав телескоп и проведя наблюдения, он выполнил объемные подсчеты светил различной яркости в определенных областях небосвода и пришел к выводу, что в космическом пространстве существует большое множество звездных островов.

Позже, в начале ХХ-го века американский космолог Эдвин Хаббл смог доказать принадлежность некоторых туманностей к структурам, отличным от Млечного Пути. То есть было достоверно известно, что за пределами нашей галактики также существуют различные звездные скопления. Исследования в этом направлении вскоре значительно расширили наше понимание Вселенной. Оказалось, что помимо Млечного Пути в космическом пространстве существуют десятки тысяч иных галактик. В попытке составить какую-нибудь упрощенную карту видимой Вселенной ученые наткнулись на тот примечательный факт, что галактики в пространстве распределены неравномерно и составляют собою иные структуры немыслимых размеров.

Скопление галактик в созвездии Гидра

«Красное смещение» и закон Хаббла

Одним из самых важных научных открытий Хаббла является природа синего и красного гравитационного смещения. С их помощью ученым удается распознать, приближается или удаляется от нас то или иное космическое тело.

В 1929 г Эдвин Хаббл с помощью 100-дюймового телескопа проводил измерение спектральных свойств галактических систем Гершеля и отметил интересный факт. С одной стороны галактики имели много общего с Млечным путем, вот только спектры их самых ярких звезд имели существенные отличия от спектров звезд из нашей Галактики. Все они были сдвинуты в более длинноволновую сторону спектра, то есть в красную. Данное явление Хаббл назвал эффект красного смещения. Ученый заметил, что в пределах одного галактического пространства, красное смещение звезд было более менее одинаковым, а вот с другими галактиками оно имело существенные отличия.

Он выделил закономерность:

Проще говоря: чем дальше расположена наблюдаемая галактика, тем эффект красного смещения будет больше. Так был сформирован закон Хаббла, который изображается формулой:

Постоянная Хаббла представляет собой коэффициент, который входит в состав закона Хаббла. С его помощью связали расстояние до определенной галактической системы или квазара со скоростью их удаления. Измеряется в км/с на мегапарсек (Мпк).Со временем значение постоянной Хаббла регулярно меняется, смысл слова «постоянная» заключается в том, что в определенный момент времени величина Н во всех точках Вселенной будет одинаковой. Изменения связаны с использованием разных методик расчета и с изобретением более новых исследовательских аппаратов. В данный момент значение постоянной 70,1 (км/с)/Мпк.

Согласно закону Хаббла ученым удалось вычислить теоретический возраст Вселенной. Для этого они оценивали величину красного смещения для самых отдаленных объектов Вселенной, зная, что в самом начале все было сжато в единую точку. Самое интересное, что хаббловский возраст Вселенной практически равен тому возрасту, который был рассчитан по космологической модели Фридмана – 13,8 млрд. лет.

Эффект красного смещения во Вселенной объясняется ее постоянным расширением. Представьте ситуацию, если человек неподвижно стоит в определенном месте, то постепенно звук, пролетающего над ним самолета, будет ослабевать и менять тон, в зависимости от увеличения расстояния.

Примерно такой же эффект происходит и с красным смещением, но его масштабы куда больше. Чем дальше находится заезда от наблюдателя, тем заметней будет изменение частоты света, исходящего от нее. Во время наблюдения красное смещение представляет собой сдвиг спектральных линий в звездном излучении в красную область спектра.

В космологии еще есть понятие синего смещения, которое представляет собой полную противоположность красному. Если происходит сдвиг спектральных линий в сторону синей области, то это означает, что галактика приближается к нам с определенной скоростью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector