Взрывчатые вещества: принцип действия и основные виды

Состав

Существуют два больших класса взрывчатых веществ — индивидуальные и композитные.

Индивидуальные представляют собой химические соединения, способные к внутримолекулярному окислению. При этом молекула вовсе не должна содержать в своем составе кислород — достаточно, чтобы одна часть молекулы передала электрон другой ее части с положительным тепловым выходом.

Энергетически молекулу такого взрывчатого вещества можно представить как шарик, лежащий в углублении на вершине горы. Он будет спокойно лежать до передачи ему некоторого сравнительно небольшого импульса, после чего скатится по склону горы, выделив при этом энергию, значительно превышающую затраченную.

Фунт тротила в заводской упаковке и аммоналовый заряд массой 20 килограмм.

К индивидуальным взрывчатым веществам относятся тринитротолуол (он же тротил, тол, ТНТ), гексоген, нитроглицерин, фульминат ртути (гремучая ртуть), азид свинца.

Композитные состоят из двух и более веществ, не связанных между собой химически. Иногда компоненты таких взрывчаток сами по себе не являются способными к детонации, а проявляют эти свойства при реакции между собой (обычно речь идет о смеси окислителя и восстановителя). Характерный пример такого двухсоставного композита — оксиликвит (пористое горючее вещество, пропитанное жидким кислородом).

Композиты могут состоять и из смеси индивидуальных взрывчатых веществ с добавками, регулирующими чувствительность, фугасность и бризантность. Такие добавки могут как ослаблять взрывные характеристики композитов (парафин, церезин, тальк, дифениламин), так и усиливать их (порошки различных химически активных металлов — алюминия, магния, циркония). Кроме того, существуют стабилизирующие добавки, увеличивающие срок хранения готовых взрывных зарядов, и кондиционные, доводящие взрывчатое вещество до требуемого физического состояния.

В связи с развитием и распространением мирового терроризма ужесточились требования к контролю над взрывчатыми веществами. В состав современных взрывчаток в обязательном порядке вводятся химические маркеры, обнаруживаемые в продуктах взрыва и однозначно указывающие на производителя, а также пахучие вещества, помогающие в обнаружении взрывных зарядов служебными собаками и приборами газовой хроматографии.

Взрывчатые вещества в военном деле

Взрывчатые вещества находят применение в военном деле повсеместно. Взрыв бывает двух типов: горение и детонация. Из-за того, что порох горит, при его взрыве в замкнутом пространстве происходит не разрушение гильзы, а образование газов и вылет пули или снаряда из ствола. Тротил, гексоген или аммонал как раз детонируют и создают взрывную волну, давление резко возрастает. Но для того, чтобы произошел процесс детонации, необходимо воздействие со стороны, которое может быть:

  • механическим (удар или трение);
  • тепловым (пламя);
  • химическим (реакция взрывчатого вещества с ещё каким-либо веществом);
  • детонационным (происходит взрыв одного взрывчатого вещества рядом с другим).

Исходя из последнего пункта, становится ясно, что можно выделить два больших класса взрывчатых веществ: композитные и индивидуальные. Первые в основном состоят из двух или более веществ, которые не связаны между собой химически. Бывает, что по отдельности такие компоненты не способны к детонации и могут проявить подобное свойство только при контакте друг с другом.

Также помимо главных компонентов в составе композитного взрывчатого вещества могут находиться различные примеси. Назначение их также является весьма широким: регулирование чувствительности или фугасности, ослабление взрывных характеристик или их усиление. Так как в последнее время мировой терроризм все больше и больше распространяется с помощью примесей, стало возможным обнаружить, где было изготовлено взрывчатое вещество, и найти его с помощью служебных собак.

С индивидуальными все понятно: иногда для положительного теплового выхода им не требуется даже кислород.

Понятие взрыва

Слово «взрыв» знакомо каждому. Однако на вопрос о том, что такое взрыв, можно ответить только исходя из того, применительно к чему это слово употребляется. Физически взрыв – это процесс экстремально быстрого выделения энергии и газов в сравнительно небольшом объёме пространства.

Стремительное расширение (тепловое или механическое) газа или иной субстанции, например, когда происходит взрыв гранаты, создаёт ударную волну (зону высокого давления), которая может обладать разрушительной силой.

В биологии под взрывом подразумевают быстрый и масштабный биологический процесс (например, взрыв численности, взрыв видообразования). Таким образом, ответ на вопрос о том, что такое взрыв, зависит от предмета исследования. Однако, как правило, под ним подразумевают именно классический взрыв, о котором и пойдёт речь далее.

Трициклическая мочевина

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» — один её килограмм заменял двадцать два килограмма тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» — динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

Общая характеристика

Вскрытие входной двери с помощью компактного подрывного заряда (2008 год)

Любое взрывчатое вещество обладает следующими характеристиками:

  • способность к экзотермическим химическим превращениям
  • способность к самораспространяющемуся химическому превращению

Важнейшими характеристиками взрывчатых веществ являются:

  • скорость взрывчатого превращения (скорость детонации или скорость горения),
  • давление детонации,
  • теплота (удельная теплота) взрыва,
  • состав и объём газовых продуктов взрывчатого превращения,
  • максимальная температура продуктов взрыва (температура взрыва),
  • чувствительность к внешним воздействиям,
  • критический диаметр детонации,
  • критическая плотность детонации.

При детонации разложение взрывчатых веществ происходит настолько быстро (за время от 10−6 до 10−2сек), что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.

Различают два основных вида действия взрывчатых веществ: бризантное (местного действия) и фугасное (общего действия).

Существенное значение при хранении взрывчатых веществ и обращении с ними имеет их стабильность.

В прикладных сферах широко используется не более двух-трёх десятков взрывчатых веществ и их смесей. Основные характеристики наиболее распространённых из них сведены в следующую таблицу (данные приведены при плотности заряда 1600 кг/м3):

Взрывчатое вещество Кислородный баланс,% Теплота взрыва, МДж/кг Объём продуктов взрыва, м3/кг Скорость детонации, км/с
Тротил -74,0 4,2 0,75 7,0
Тетрил -47,4 4,6 0,74 7,6
Гексоген -21,6 5,4 0,89 8,1
Тэн -10,1 5,9 0,79 7,8
Нитроглицерин +3,5 6,3 0,69 7,7
Аммонит № 6 4,2 0,89 5,0
Нитрат аммония +20,0 1,6 0,98 ≈1,5
Азид свинца неприменимо 1,7 0,23 5,3
Баллиститный порох -45 3,56 0,97 7,0

CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение – отсутствие промышленных технологий.

Стифнат свинца

Основным взрывным устройством, используемым в композициях в инициируемой проволочной перемычке, в качестве праймеров, не вызывающих коррозию, в детонаторах и в устройствах, инициируемых ударами, является стифнат свинца. Это вещество используется предпочтительно во всех коммерческих образцах США. Поскольку он обеспечивает теплообмен от мостовой проволоки, обеспечивает высокую производительность и дефлаграцию, это вещество широко используется в качестве инициаторов в военном электричестве.

Это очень полезное электрическое и химическое вещество, содержащее свинец (тяжелый металл), которое токсично при выделении в окружающую среду во время использования. Среди энтузиастов оружия свинец, токсичный металл, оказался крайне опасен для здоровья.

Поскольку владение огнестрельным оружием является законным в домохозяйствах США, комбинация пороха и свинцового стифната обычно используется в пулях. В США имеется от 16000 до 18000 полигонов в закрытых помещениях. По оценкам, один миллион сотрудников правоохранительных органов на полигонах, а 20 миллионов практикуют стрельбу как одно из своих хобби.

Использование огнестрельного оружия может привести к отравлению согласно исследованию. В стрельбищах воздействие свинца от частиц и пуль в воздухе слишком опасно для здоровья, если оно достигает уровня в крови стрелка.

Грунтовка пули состоит из стифната свинца и диоксида свинца примерно на 35%. Сильный жар, который ощущается после взрыва пули, уничтожает некоторые фрагменты свинца, поэтому после вдыхания он может всасываться в кровоток. Пыль свинца, которая появляется в одежде стрелков, может привести к загрязнению их дома и автомобиля. Его также можно транспортировать во время еды, курения или питья из рук в рот.

В 2015 году в городе Власим, Чешская Республика, погибли три человека из-за взрыва, вызванного стифнатом свинца на боеприпасах на заводах в Селье и Белло. Для расследования инцидента были вызваны эксперты по бомбам, и они использовали робота, который был специально разработан для обеспечения их безопасности.

Огромный взрыв может произойти, если стифнат свинца подвергается воздействию статического электричества и пожара даже в небольшом количестве, потому что он очень чувствителен к этим двум компонентам.

A-IX-2 или как Ледин решил нерешаемую задачу

Не взрывчаткой ТГА поразил специалистов инженер Ледин, она была его разминкой. К 1941 году он решил проблему, над которой до этого 30 лет безуспешно бились химики всех стран и к тому времени стали эту проблему считать неразрешимой в принципе. Вот в чем дело.

Уже к началу века черный порох в артиллерийских снарядах стали заменять более сильными взрывчатыми веществами. Идеальным взрывчатым веществом для этих целей стал тринитротолуол (ТНТ, тол). Он безопасен в обращении, надежен, легко заливается в корпуса снарядов. Он идеален практически для всех видов снарядов… кроме бронебойных.

При падении снаряда на землю, при ударе его о не очень твердые препятствия тринитротолуол выдерживает сотрясение и взрывается только тогда, когда его подорвет детонатор взрывателя. Но бронебойный снаряд летит с очень высокой скоростью, и его удар о броню очень резкий. Тринитротолуол не выдерживает удара и взрывается немедленно. Снаряд разрушается на броне и броню пробить не может.

Для того чтобы тринитротолуол преждевременно не взрывался, в него вводят флегматизаторы — вещества, делающие взрывчатку более устойчивой к удару. Но при этом падает мощность взрыва чуть ли не до мощности черного пороха. Химики брали более мощные взрывчатые вещества, но они практически все еще более нежные и уже не выдерживают не только удара о броню, но даже толчка при выстреле — взрываются прямо в стволе пушки. Таким взрывчатым веществам, чтобы они преждевременно не взрывались, нужно вводить флегматизаторы в увеличенных объемах, после чего мощность их взрыва становится, как у тринитротолуола — овчинка выделки не стоит. С начала века по начало Второй мировой войны химики перепробовали все и пришли к выводу, что эту задачу решить невозможно.

Так вот, в 1938 году Ледин взялся изобрести взрывчатое вещество для бронебойных снарядов, которое бы было в два раза мощнее тринитротолуола! Когда он разработал техзадание на это вещество, то все ученые, профессоры и прочие специалисты просто сочли его безграмотным дураком. Но поскольку Ледин был вольнонаемным при военной лаборатории, то начальство не возражало, чтобы он «побаловался» над решением нерешаемой задачи.

В это время случилась неприятность — Ледина призвали в армию. Специалисты в лаборатории были очень нужны, и начальство предложило присвоить ему офицерское звание и включить в штат лаборатории. Ему бы предоставили квартиру, высокий оклад, пайки и т.д. и т.п. Но в этом случае Ледин уже не смог бы заниматься своей взрывчаткой и вынужден был бы работать по плану лаборатории. И Ледин отказывается становиться офицером. Его призывают на службу матросом, но, правда, лаборатория добивается, чтобы он служил при ней. Теперь у Ледина не хватает денег снимать квартиру, содержать семью. Он отправляет ребенка к матери, они с женой ночуют по углам у друзей, меняя эти углы каждую ночь. Но Ледин упорно работает над своим изобретением и к началу войны создает взрывчатку, которая выдерживает удар снаряда о броню, но мощнее тринитротолуола более чем в 2 раза!

Уже по этой причине Ледин — выдающийся советский инженер и ученый! Но и это не все…

Снаряды, снаряженные взрывчаткой Ледина (он назвал ее A-IX-2), стали обладать такой высокой температурой взрыва, что поджигали внутри танка все, что могло гореть. Из-за этого они одно время назывались еще и зажигательными. А зенитные снаряды, снаряженные этой взрывчаткой, резко увеличили эффективность: был случай, когда одним удачно посланным 130-мм снарядом было сбито сразу звено из 3-х немецких бомбардировщиков. Если же стрельба велась ночью, то вспышки взрывов были настолько яркими, что немецкие летчики слепли и уже не видели ни земли, ни приборов, ни соседних самолетов. Но и это все еще не все.

Когда немцы добыли эти наши бронебойные снаряды, снаряженные взрывчаткой Ледина, то немецкая химия попыталась ее воспроизвести. Захваченный после войны отчет немецкого института Chemisch-Technische Reichanstalt Institut начинается с приказа Гитлера открыть секрет взрывчатки Ледина. В отчете описывается огромная работа немецких химиков по разгадке секрета этой взрывчатки. Из чего она создана, они, разумеется, немедленно поняли. Но как Ледин ее создал, они до конца войны понять не смогли. Эстафету у немцев приняли химики НАТО, США, Европы и всего мира. Бесполезно!

СССР сумел сохранить тайну, и 50 лет бронебойные снаряды, боевые части ракет были у Советской Армии самыми мощными в мире!

Инженер Ледин опередил своих коллег во всем мире на 50 лет, а если бы СССР не уничтожили и тайну взрывчатки не продали Западу, то, возможно, эта цифра удвоилась бы.

Как детонирует взрывчатое вещество

Различные взрывчатые вещества взрываются несколько по-разному. Например, для пороха характерна реакция быстрого воспламенения с выделением энергии в течение относительно большого промежутка времени. Поэтому он используется в военном деле для придания скорости патронам и снарядам без разрыва их оболочек.

При другом типе взрыва (детонационный) взрывная реакция распространяется по веществу со сверхзвуковой скоростью и она же является причиной. Это приводит к тому, что энергия выделяется в очень короткий промежуток времени и с огромной скоростью, поэтому металлические капсулы разрывает изнутри. Такой тип взрыва типичен для таких опасных взрывчатых веществ, как гексоген, тротил, аммонит и т. д.

Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

Работоспособность взрывчатого вещества

 
Работоспособность (фугасность) взрывчатого вещества проявляется в форме выброса грунта из воронок и выемок, образовании полостей в грунтах и скальных поводах и рыхлении их. Эта характеристика соответствует полному импульсу, величина которого определяется расчетом и может быть измерена в лабораторных условиях специальными пьезокварцевыми датчиками с осциллографами, баллистическими маятниками и т. п. Для определения работоспособности взрывчатого вещества обычно принята более доступная и простая проба в бомбе Трауцля, отливаемой из свинца в форме цилиндра диаметром) высотой 200 мм. По оси цилиндра оставляют канал диаметром 25 мм и глубиной 125 мм , в который помещают 10 г взрывчатого вещества при плотности в  1 гр/см3, а все оставшееся свободное пространство в канале засыпают кварцевым песком, прошедшим решето со 144 отверстиями.

Правила работы с взрывоопасными веществами

Травмы, наносимые взрывоопасными веществами и смесями, разнообразны.
Помимо уже рассмотренных выше термических и химических ожогов, сам экспериментирующий
и находящиеся по соседству могут получить контузию и нервный шок от удара
образовавшимися газами, повреждения барабанной перепонки и ранения осколками
стеклянной посуды и металлического оборудования. Помощь пострадавшим в результате
контузии, нервного шока и поражения слухового аппарата оказывается только врачами
(см. также ).

Реакцию, которая, предположительно, может протекать со взрывом или в результате
которой может образоваться взрывоопасное вещество или смесь, необходимо проводить
под тягой, поместив прибор в цилиндр из металлической сетки или, если это возможно,
обернув его асбестовым одеялом. Перед прибором целесообразно поставить предохранительный
экран из толстого листа органического стекла или какого-либо другого прочного материала.
Выполняющий взрывоопасный синтез должен быть в защитной маске из прочного материала,
резиновых перчатках и резиновом переднике. В некоторых случаях целесообразно использовать
защитные проволочные шлемы.

Нельзя растирать, нагревать и даже неосторожно смешивать органические вещества
с активными окислителями (например, с перманганатом, хлоратом и перхлоратом калия и др.).

Газ из газовой сети также образует c воздухом взрывоопасные смеси. По этой причине
нельзя, входя в лабораторное помещение и почувствовав запах газа, включать электрический
свет или зажигать спички.

Посуду из-под легколетучих жидкостей необходимо сразу же вымыть, предварительно
заполнив ее под тягой водой, поскольку остатки легколетучего вещества в сосуде
могут образовать взрывоопасную смесь с воздухом. По этой же причине нельзя выливать
легколетучие жидкости в раковины.

Нельзя перегонять досуха нитробензол, так как он может содержать примесь
взрывоопасного динитросоединения.

Пробы смесей газов на взрывоопасность (например, проверка чистоты
электролитического водорода) можно проводить только с малыми их количествами,
предварительно собирая газ в пробирку под водой. Категорически запрещается осуществлять
пробы при помощи открытого огня у места выхода газа. Вблизи от места заполнения
газометра водородом не должно быть зажженных горелок: водород, смешиваясь с воздухом,
может образовать взрывоопасную смесь.

Многие органические вещества при хранении на воздухе образуют перекиси.
Из наиболее часто встречающихся веществ этим свойством обладают: диэтиловый эфир
и некоторые другие диалкиловые эфиры (особенно диизопропиловый), тетрагидрофуран,
диоксан, ацетон, многие диеновые углеводороды (например, пиперилен, изопрен,
циклогексадиен, гексадиен-2,4 и др.). Перед началом работы с этими соединениями
(особенно, если они долго хранились) следует проверить их на содержание перекисей.
Для этого в пробу вещества помещают кристаллик железного купороса (в присутствии
перекисей он приобретает коричневый цвет) или прибавляют взятую пипеткой со дна
сосуда пробу вещества (перекиси обычно скапливаются на дне) к 2 н. раствору йодистого
калия и крахмала (в присутствии перекисей при перемешивании появляется синяя окраска).
Для удаления перекисей к веществу следует добавить насыщенный водный раствор железного
купороса и оставить, время от времени перемешивая смесь палочкой, до отрицательной или
очень слабой реакции на перекиси

В последнем случае вещество можно осторожно встряхнуть
в делительной воронке со свежей порцией раствора железного купороса. Вещества, способные
при стоянии образовывать перекиси, нельзя перегонять досуха даже после освобождения от
перекисей или в том случае, если в них не было обнаружено перекисей

Инициирующие взрывчатые вещества

Обладают высокой чувствительностью к внешним воздействиям, их взрыв (детонация) оказывает детонационное воздействие на бризантные и метательные ВВ, которые обычно к остальным типам внешнего воздействия не чувствительны вовсе или же обладают неудовлетворительной чувствительностью.

Поэтому, инициирующие вещества и применяют только для возбуждения взрыва бризантных или метательных ВВ. Для обеспечения безопасности применения инициирующих ВВ, их упаковывают в защитные приспособления (капсюль, капсюльная втулка, капсюль – детонатор, электродетонатор, взрыватель). Типичные представители инициирующих ВВ: гремучая ртуть, азид свинца, тенерес (ТНРС).

Гремучая ртуть (фульминат ртути). Это вещество представляет собой мелкокристаллическое сыпучее вещество белого или серого цвета. Ядовита, плохо растворяется в холодной и горячей воде. Получают его из металлической ртути путем обработки ее азотной кислотой и этиловым спиртом в присутствии некоторых добавок: медных опилок и соляной кислоты.

Гремучая ртуть (фульминат ртути) под стеклом.

К удару, трению и тепловому воздействию гремучая ртуть наиболее чувствительна по сравнению с другими инициирующими ВВ, применяемыми на практике. При увлажнении гремучей ртути ее взрывчатые свойства и восприимчивость к начальному импульсу понижаются (например, при 10 % влажности гремучая ртуть только горит, не детонируя, а при 30 % влажности не горит и не детонирует).

При отсутствии влаги, гремучая ртуть не взаимодействует химически с медью и ее сплавами. С алюминием же она взаимодействует энергично с выделением тепла и образованием невзрывчатых соединений (происходит разъединение алюминия). Поэтому гильзы гремучертутных капсюлей изготовлены из меди или мельхиора, а не из алюминия.

Гремучая ртуть разлагается в кислотах и щелочах, а также при нагревании до температуры +50°С и более, а концентрированная серная кислота вызывает ее взрыв. Применяется для снаряжения капсюлей-воспламенителей запалов.

Азид свинца (азотистоводородный свинец) представляет собой белый негигроскопичный мелкокристаллический порошок. При воздействии на него влаги и низких температур не снижает своей чувствительности и способности детонировать. Получают его из металлического натрия и свинца в результате взаимодействия их с аммиаком и азотной кислотой. Интересно то, что азид свинца является единственным из применяемых ВВ, не содержащим кислород.

Азид свинца (азотистоводородный свинец)

Кислоты, щелочи, углекислый газ (особенно в присутствии влаги) и солнечный свет медленно разлагают азид свинца. Температурные колебания не влияют на его стойкость, но при нагревании до +200°С он начинает разлагаться.

По сравнению с гремучей ртутью, азиц свинца менее чувствителен к искре, лучу пламени и удару: но инициирующая способность азида свинца выше, чем у гремучей ртути. Так, например, для инициирования одного грамма тетрила нужно 0,29 г гремучей ртути и только 0,025 г азида свинца.

Для надежности возбуждения детонации азида свинца от искры и накола его покрывают, соответственно, слоем тенереса или специального накольного состава.

Азид свинца химически не взаимодействует с алюминием, но взаимодействует с медью и ее сплавами, с образованием азида меди, который во много раз чувствительнее азида свинца, поэтому гильзы капсюлей снаряжаемых азидом свинца, изготовляются из алюминия, а не из меди. Применяется для снаряжения капсюлей-детонаторов.

Тенерес или ТНРС (тринитрорезорцинат свинца) – несыпучий мелкокристаллический порошок желтого цвета, малогигроскопичный и не взаимодействующий с металлами, представляет собой свинцовую соль стифниновой кислоты. Не подвержен разложению кислотами. Под действием солнечного света тенерес темнеет и разлагается. Температурные колебания на тенерес действуют так же, как и на азид свинца. Растворимость тенереса в воде незначительна.

Инициирующая способность тоже весьма незначительна (даже 2 грамма тенереса не вызывают детонации тетрила), поэтому тенерес как самостоятельное инициирующее вещество не применяется, а вследствие своей большей чувствительности к искре и лучу пламени по сравнению с азидом свинца идет вместе с ним на снаряжение капсюлей-детонаторов.

Перекись ацетона

В 2005 году химическим веществом, которое заставило правительство Соединенного Королевства умерить «злоупотребление интернетом», был пероксид ацетона. Через Интернет были найдены инструкции по изготовлению бомбы, и это было признано серьезной опасностью.

При смешивании в правильной пропорции обычные ингредиенты, встречающиеся в домашнем хозяйстве, могут образовывать кристаллы — перекись ацетона, которая имеет белый цвет, такой как антисептик, отбеливатель и мощные антиблокирующие средства. Продукция для оказания первой помощи и косметика также являются ее целью. Перекись ацетона считалась огнестрельным оружием террористов-смертников, поскольку она легко доступна.

Перекись триацетона (ТАТП) — правильное название химического перекиси ацетона. Среди исламских экстремистов другое название TATP — «Мать сатаны». Неправильное использование этого вещества стало причиной десятков смертей и разрушительной нестабильности. Обладая высокой чувствительностью к трению, нагреву и механическим воздействиям, TATP обладает мощным взрывом, близким к тротиловому.

В терактах в Париже, произошедших в 2015 году, использовался триацетон пероксид. 130 человек погибли и 99 получили ранения в результате взрыва взрывчатого снаряда, заложенного взрывчаткой, семью из восьми террористов.

Взрывчатые вещества

Взрывчатое вещество – это химическая смесь, которая под действием определённых, легко достигаемых условий, вступает в бурную химическую реакцию, приводящую к быстрому выделению энергии и большого количества газа. По своей природе взрыв такого вещества подобен горению, только протекает оно с огромной скоростью.

Внешние воздействия, которые могут спровоцировать взрыв, бывают следующими:

  • механические воздействия (например, удар);
  • химический компонент, связанный с добавлением во взрывчатое вещество других составляющих, которые провоцируют начало взрывной реакции;
  • температурное воздействие (нагрев взрывчатого вещества или попадание на него искры);
  • детонация от близлежащего взрыва.

Техногенные взрывы

На промышленном предприятии взрывоопасные объекты не редкость, а потому там могут возникнуть такие виды взрывов, как воздушный, наземный и внутренний (внутри технического сооружения). При добыче каменного угля нередкими являются взрывы метана, что особенно характерно для глубоких угольных шахт, где по этой причине имеется дефицит вентиляции. Причём различные угольные пласты имеют разное содержание метана, поэтому и уровень взрывной опасности на шахтах различен. Взрывы метана являются большой проблемой для глубоких шахт Донбасса, что требует усиления контроля и мониторинга его содержания в воздухе рудников.

Взрывоопасные объекты – это ёмкости со сжиженным газом или находящимся под давлением паром. Также военные склады, контейнеры с аммиачной селитрой и многие другие объекты.

Последствия взрыва на производстве могут быть непредсказуемые, в том числе трагические, среди которых лидирующее место занимает возможный выброс химикатов.

Общие понятия

Взрыв – это стремительное преобразование взрывчатого вещества в значительное количество чрезвычайно сжатых и нагретых газов, которые, расширяясь, совершают следующую работу: перемещают, дробят, разрушают, выбрасывают.

Смотреть галерею

Взрывчатое вещество подразумевает собой механическую смесь или соединения химических элементов, которые могут быстро преобразоваться в газы. Взрыв похож на горение угля или дров, но различается большой скоростью протекания этого процесса, которая часто составляет десятитысячные доли секунды. В зависимости от скорости превращения взрывы подразделяют так:

  • Горение. Передача энергии от одного слоя вещества к другому совершается вследствие теплопроводности. С небольшой скоростью протекает процесс горения и возникновения газов. Такой взрыв свойственен пороху, при котором пуля выбрасывается, но гильза не разрушается.
  • Детонация. Энергия от слоя к слою передается практически мгновенно. Газы образуются со сверхзвуковой скоростью, давление стремительно увеличивается, и происходят сильные разрушения. Такой взрыв присущ гексогену, аммониту, тротилу.

Для того чтобы начался процесс взрыва, требуется воздействие извне на взрывчатое вещество, которое бывает следующих типов:

  • детонационное – взрыв рядом другого ВВ;
  • тепловое – нагревание, искра, пламя;
  • химическое – химическая реакция;
  • механическое – трение, накол, удар.

Взрывчатого типа вещества неодинаково реагируют на воздействия извне:

  • некоторые способны быстро взрываться;
  • другие – чувствительны только к определенному воздействию;
  • третьи могут взрываться даже без всякого влияния на них.

История

Впервые это взрывчатое вещество было синтезировано немецким ученым Вильбрандом в 1863 году, но несколько десятилетий об этом открытии забыли. Вспомнили о нем только в конце XIX века. Работы по началу серийного производства тротила во многом связаны с именем еще одного известного немецкого химика – Каста. Этот человек был крупнейшим специалистом по взрывчатым веществам своего времени. Именно под его руководством в 1905 году в Германии были получены первые сто тонн тринитротолуола. Естественно, что все работы над новой взрывчаткой были строго засекречены, поэтому ей дали ничего не означающее название – «тротил».

Однако вскоре тайна нового взрывчатого вещества была раскрыта русскими химиками, и тротил стал выпускаться и в России. Через некоторое время производство этой взрывчатки началось и в других странах.

Уже в Первую мировую войну все страны-участницы конфликта производили огромное количество тротила, которое измерялось тысячами тонн. Хотя, в это время с тринитротолуолом еще соперничала пикриновая кислота. Но уже к началу следующего мирового конфликта тол стал наиболее распространенной в мире взрывчаткой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector