Взрыв: типы, поражающие факторы, степени тяжести травм
Содержание:
- Параметры взрывчатых веществ
- Терминология
- Поражающие факторы
- Виды и типы взрывов
- Понятие взрыва
- Взрывы газа
- Взрывчатый краситель
- Действие взрыва на здания сооружения
- Взрывчатые вещества в военном деле
- Группы взрывчатых веществ
- Взрывчатые вещества
- Примечания
- Взрыв в Энциклопедическом словаре:
- Классификация взрывов
- Структурирование Вселенной
- Интересные факты[]
- Время оптимизма
- Виды взрывов
Параметры взрывчатых веществ
В соответствии с объемами и скоростью энерго- и газовыделения все взрывчатые вещества оценивают по таким параметрам, как бризантность и фугасность. Бризатность характеризует скорость энерговыделения, которая напрямую влияет на разрушающие способности взрывчатого вещества.
Фугасность определяет величину выделения газов и энергии, а значит и количество произведённой при взрыве работы.
По обоим параметрам лидирует гексоген, который является наиболее опасным взрывчатым веществом.
Итак, мы попытались дать ответ на вопрос о том, что такое взрыв. А также рассмотрели основные типы взрывов и способы классификации взрывчатых веществ. Надеемся, что прочитав эту статью, вы получили общее представление о том, что такое взрыв.
Терминология
Сложность и разнообразие химии и технологии взрывчатых веществ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.
Действующая редакция 2011 года принятой ООН Согласованной на глобальном уровне системы классификации и маркировки химических веществ (СГС) даёт следующие определения:
Под взрывчатыми веществами понимаются как индивидуальные взрывчатые вещества, так и взрывчатые составы, содержащие одно или несколько индивидуальных взрывчатых веществ, флегматизаторы, металлические добавки и другие компоненты. Взрывчатое превращение взрывчатых веществ характеризуется следующими условиями:
- высокая скорость химического превращения;
- выделение тепла (экзотермичность процесса);
- образование газов или паров в продуктах взрыва;
- способность реакции к самораспространению.
В России в рамках стандартизации в области техногенных чрезвычайных ситуаций к взрывоопасным относят вещества, взрывающиеся при воздействии пламени или проявляющие чувствительность к сотрясениям или трениям большую, чем динитробензол.
Поражающие факторы
Действия продуктов взрыва и образовавшаяся ударная волна в зоне своего действия имеют свои характеристики. Главными из них являются поражающие факторы.
Первичные
Основной поражающий фактор взрыва — ударная волна, распространяющаяся от центра взрыва со сверхзвуковой скоростью. К первичным факторам относятся массивы летящих осколков разрушенных конструкций, зданий, оборудования, а также взрывных устройств и боеприпасов — мин, снарядов, бомб.
Вторичные
Вторичными последствиями взрыва становятся пожары как на открытой местности, так и внутри зданий, утечка токсичных и других опасных веществ при разрушении производственных цехов и оборудования. К этому же ряду относятся ранения и заваливание людей обломками стеклянных конструкций, обрушившихся зданий. Вторичными последствиями взрыва могут стать природные катастрофы — затопления из-за разрушенных плотин, а также заражение атмосферы, воды, почвы.
Виды и типы взрывов
Выделяют три основных типа взрывов. Каждый из них может быть одинаково разрушительным и причинять колоссальный ущерб населению, инфраструктуре, окружающей среде.
Химические взрывы происходят в результате реакций разложения или соединения, сопровождающихся выделением теплоты. Следствием этого становится быстрое расширение выделяемого газа и образование ударной волны.
При механическом (физическом) взрыве внутри ограниченного пространства происходит расширение газа под высоким давлением. Выброс за пределы пространства избыточного давления создает ударную волну.
Ядерный взрыв происходит в результате реакции синтеза или деления, при которой очень быстро выделяется большое количество тепла и газа. Высвободившаяся энергия нагревает окружающий воздух и создает взрывную волну.
Вид взрыва зависит от свойств горючих материалов и их взаимодействия с атмосферным кислородом, который горит только с определённым количеством горючей субстанции (процесс окисления). В зависимости от силы взрыва и связанной с ним скорости распространения волны давления различают:
- низкоскоростную детонацию;
- дефлаграцию, или распространение процесса горения с дозвуковой скоростью;
- детонацию, или распространение взрыва со сверхзвуковой скоростью.
Следствием всех типов взрывов являются ударное, тепловое и вибрационное воздействия на объекты, нередко приводящие к их разрушению или уничтожению.
Понятие взрыва
Слово «взрыв» знакомо каждому. Однако на вопрос о том, что такое взрыв, можно ответить только исходя из того, применительно к чему это слово употребляется. Физически взрыв – это процесс экстремально быстрого выделения энергии и газов в сравнительно небольшом объёме пространства.
Стремительное расширение (тепловое или механическое) газа или иной субстанции, например, когда происходит взрыв гранаты, создаёт ударную волну (зону высокого давления), которая может обладать разрушительной силой.
В биологии под взрывом подразумевают быстрый и масштабный биологический процесс (например, взрыв численности, взрыв видообразования). Таким образом, ответ на вопрос о том, что такое взрыв, зависит от предмета исследования. Однако, как правило, под ним подразумевают именно классический взрыв, о котором и пойдёт речь далее.
Взрывы газа
Самые распространенные чрезвычайные происшествиями, при которых происходит взрыв газа, случаются в результате неправильного обращения с газовым оборудованием
Важно своевременное устранение и характерное определение. Что значит взрыв от газа? Происходит он из-за неправильной эксплуатации
Для того чтобы не допустить подобных взрывов, все газовое оборудование должно проходить регулярный профилактический технический осмотр. Всем жителям частных домовладений, а также многоквартирных домов, рекомендован ежегодный ТО ВДГО.
Для снижения последствий взрыва конструкции помещений, в которых установлено газовое оборудование, делают не капитальными, а, наоборот, облегченными. В случае взрыва не возникает больших повреждений и завалов. Теперь вы представляете, что такое взрыв.
Для того чтобы утечку бытового газа было легче определить, в него добавляют ароматическую добавку этилмеркаптан, что обуславливает характерный запах. При наличии такого запаха в помещении необходимо открыть окна, обеспечив поступление свежего воздуха. После чего следует вызвать газовую службу. В это время лучше не пользоваться электрическими выключателями, способными вызвать искру. Строго запрещается курить!
Взрыв пиротехники тоже может стать угрозой. Склад таких предметов должен быть оборудован в соответствии с нормами. Некачественная продукция может нанести вред человеку, который ею пользуется. Все это стоит непременно учитывать.
Взрывчатый краситель
В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.
Трехмерная модель молекулы тринитрофенола.
Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.
В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.
Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.
Это интересно: позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.
Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.
В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота».
Действие взрыва на здания сооружения
Ударная волна, поток осколков, летящие предметы, воздействие высокой температуры и отравляющих продуктов процесса горения относят к поражающим факторам взрыва. Под их воздействие в первую очередь попадают все сооружения, здания. Наиболее значительным разрушениям подвергаются высокие строения, имеющие легкие несущие элементы.
Низкие или подземные сооружения, произведенные из тяжелых конструкций, обладают хорошей устойчивостью к поражающим факторам и имеют меньше разрушительных последствий.
В зависимости от действия взрыва на здания и сооружения выделяются следующие степени их деструкции:
- Полная, когда восстановление из-за уничтожения несущих конструкций невозможно.
- Сильная. Разрушения затрагивают большую часть здания.
- Средняя. Уничтожению или повреждению подверглись большей частью лишь второстепенные части (крыши, двери, перегородки, оконные проемы). Иногда возникают трещины в стенах, подвал сохранен.
- Слабая степень характеризуется незначительными разрушениями, которые устраняются в течение короткого времени.
Продукты взрыва, образовавшаяся волна и выделяемая энергия способна вызвать человеческие жертвы. Резкое повышение давления воздушной массы, воспринимаемое человеком, как сильный удар служит основной причиной получения тяжелых травм. Кроме того, набирающий скорость воздушный напор способен отшвырнуть человека на большое расстояние, ударив его об землю или другое препятствие. Возникающие в таких случаях повреждения зачастую оказываются не совместимыми с жизнью.
Наибольшим разрушающим воздействием обладает ядерный взрыв. Помимо сметающей волны, возникает сильное световое и радиационное излучение, поражающее все вокруг. Радиация оказывает сильное разрушающее действие на землю, воду, любые посадки. С последствиями заражениями радиоактивными частицами приходится бороться несколько десятков лет. Подробнее о понятиях радиоактивности Вы можете ознакомиться в нашей презентации на сайте.
Взрывчатые вещества в военном деле
Взрывчатые вещества находят применение в военном деле повсеместно. Взрыв бывает двух типов: горение и детонация. Из-за того, что порох горит, при его взрыве в замкнутом пространстве происходит не разрушение гильзы, а образование газов и вылет пули или снаряда из ствола. Тротил, гексоген или аммонал как раз детонируют и создают взрывную волну, давление резко возрастает. Но для того, чтобы произошел процесс детонации, необходимо воздействие со стороны, которое может быть:
- механическим (удар или трение);
- тепловым (пламя);
- химическим (реакция взрывчатого вещества с ещё каким-либо веществом);
- детонационным (происходит взрыв одного взрывчатого вещества рядом с другим).
Исходя из последнего пункта, становится ясно, что можно выделить два больших класса взрывчатых веществ: композитные и индивидуальные. Первые в основном состоят из двух или более веществ, которые не связаны между собой химически. Бывает, что по отдельности такие компоненты не способны к детонации и могут проявить подобное свойство только при контакте друг с другом.
Также помимо главных компонентов в составе композитного взрывчатого вещества могут находиться различные примеси. Назначение их также является весьма широким: регулирование чувствительности или фугасности, ослабление взрывных характеристик или их усиление. Так как в последнее время мировой терроризм все больше и больше распространяется с помощью примесей, стало возможным обнаружить, где было изготовлено взрывчатое вещество, и найти его с помощью служебных собак.
С индивидуальными все понятно: иногда для положительного теплового выхода им не требуется даже кислород.
Группы взрывчатых веществ
Различают три основные группы конденсированных взрывчатых веществ.
Свойства | |
I | Особо опасные взрывчатые вещества.
Склонны к вступлению в реакцию превращения, малостабильны. Опасность представляют даже в небольших количествах. Примеры: ацетиленид меди (I), трихлорид азота. |
II | Первичные взрывчатые вещества.
Более стабильны по сравнению с I группой. Легко детонируют от механического или теплового действия извне. Зачастую применяются в детонаторах. Примеры: азид свинца, фульминат ртути (II). |
III | Вторичные взрывчатые вещества.
Инициация взрыва наступает лишь при сильном внешнем воздействии, например, от детонации. Относительно стабильны и предусматривают длительное хранение, возможно складирование. Примеры: динамит, тротил. |
IV | Порох
Взрывы очень стабильны, слабо реагируют на внешнее механическое воздействие. Инициируются от тепла. В зависимости от условий окружающей среды могут гореть или взрываться (в случае замкнутого контура). |
Взрывчатые вещества
Взрывчатое вещество – это химическая смесь, которая под действием определённых, легко достигаемых условий, вступает в бурную химическую реакцию, приводящую к быстрому выделению энергии и большого количества газа. По своей природе взрыв такого вещества подобен горению, только протекает оно с огромной скоростью.
Внешние воздействия, которые могут спровоцировать взрыв, бывают следующими:
- механические воздействия (например, удар);
- химический компонент, связанный с добавлением во взрывчатое вещество других составляющих, которые провоцируют начало взрывной реакции;
- температурное воздействие (нагрев взрывчатого вещества или попадание на него искры);
- детонация от близлежащего взрыва.
Примечания
- Взрыв//Большая Советская Энциклопедия
- Водяник В.И. Горение и взрыв газов//Безопасность труда в промышленности N 1, 2005
- ↑ 12 Д. З. Хуснутдинов, А. В. Мишуев, В. В. Казеннов и др. Аварийные взрывы газовоздушных смесей в атмосфере : монография —М.:МГСУ, 2014
- Бейкер У. и др. Взрывные явления. Оценка и последствия т.1 —М.: «Мир», 1986
- Овчаренко Н.Л. Предупреждение взрывов в доменных и сталеплавильных цехах —М., 1963
- ↑ 12 Таубкин И.С. О терминологии в уголовно-правовой классификации взрывов//Теория и практика судебной экспертизы №1 (29) 2013
- Покровский Г.И. Взрыв и его действие —М., 1954
Взрыв в Энциклопедическом словаре:
Взрыв — освобождение большого количества энергии в ограниченном объеме закороткий промежуток времени. Взрыв приводит к образованию сильно нагретогогаза с очень высоким давлением, который при расширении оказываетмеханическое воздействие (давление, разрушение) на окружающие тела. Втвердой среде сопровождается ее разрушением и дроблением. Взрывыпроисходят за счет освобождения химической энергии (главным образомвзрывчатых веществ), внутриядерной энергии (ядерный взрыв),электромагнитной энергии (искровый разряд, лазерная искра и др.),механической энергии (при падении метеоритов на поверхность Земли,извержении вулканов и др.). Проектируемые взрывы осуществляются в основномпромышленными взрывчатыми веществами и лежат в основе многихтехнологических процессов. См. также Направленный взрыв.
Классификация взрывов
Взрывы могут иметь различную природу, мощность. Происходят в различных средах (включая вакуум). По природе возникновения взрывы можно разделить на:
- физические (взрыв лопнувшего шарика и т. д.);
- химические (например, взрыв тротила);
- ядерные и термоядерные взрывы.
Химические взрывы могут протекать в твёрдых, жидких или газообразных веществах, а также воздушных взвесях. Главными при таких взрывах являются окислительно-восстановительные реакции экзотермического типа, либо экзотермические реакции разложения. Примером химического взрыва является взрыв гранаты.
Физические взрывы возникают при нарушении герметичности ёмкостей со сжиженным газом и другими веществами, находящимися под давлением. Также их причиной может стать тепловое расширение жидкостей или газов в составе твёрдого тела с последующим нарушением целостности кристаллической структуры, что приводит к резкому разрушению объекта и возникновению эффекта взрыва.
Структурирование Вселенной
Вот что произошло за 14 миллиардов лет.
В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.
Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.
Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.
Интересные факты[]
- Взрывы с мощностью, превышающей 100, приводят к похожим разрушениям на поверхности, поскольку для определения разрушаемых блоков используются только некоторые линии. При этом некоторые из этих линий продолжают взрывать блоки под поверхностью.
- Взрыв, достаточно мощный, чтобы разбить коренную породу
При этом коренная порода не выпала бы как дроп из разрушенных блоков.
, должен обладать радиусом взрыва более 30 миллионов блоков. Если бы это был непрерывный взрыв, он бы охватил 238 775 510,1 блоков. Однако взрывы идут только по определённым линиям, а не в каждом блоке.
- Взрывы, происходящие в проточной воде или лаве, причиняют урон сущностям, но не разрушают блоки, независимо от сопротивления взрывов блоков.
- Если ТНТ взорвётся в большом, непрерывном кубе каменных блоков, он создаст пустоту 3×3×3 внутри камня.
- Взрывы могут перенаправлять выпущенные снаряды, в том числе и жемчуг Края.
- В отличие от ТНТ, урон от крипера, взорвавшегося в воде, не будет нанесён.
- Сила взрыва заряженного крипера равна 4,75, что слабее, чем у кровати. Но несмотря на это, урон от первого будет нанесен больше.
- Закрыть портал в Нижний мир может только взрыв огненного шара гаста.
- Взрыв с источником, находящимся на плите из любого материала, взорвёт только эту плиту.
- Взрыв силой ~1 542 860 способен взорвать коренную породу.
- Если падающий песок попадает в находящийся в воде зажжённый ТНТ, местность под водой будет взорвана.
- Единственный блок, который невозможно взорвать — это невидимая коренная порода. Это единственный блок, взрывоустойчивость которого отрицательна (-1)
Время оптимизма
Добавим еще немного оптимизма. Как показывают теоретические модели, значительная часть населения переживет первые ядерные удары по городам. Вопреки историям про радиоактивный пепел, подсчитано, что в США выживет под 60%. В России, в силу большей скученности населения и многоэтажной застройки, доля выживших будет чуть меньше, но все же довольно солидной. Но как же конец света, ядерная зима, голод и полчища мутантов?
К сожалению, анализ городского фольклора в наши задачи не входит. Поэтому просто отметим: ядерной зимы на практике не случится. Гипотеза о ней опиралась на предположение об образовании огненных смерчей над городами, зажженными ядерными ударами. С ними сажа может достигать стратосферы, выше уровня обычных облаков, и оставаться там годами. Однако сегодня специалисты сходятся на том, что такой сценарий для современного мегаполиса маловероятен, и даже если отдельные огненные смерчи возникнут, их силы не хватит для подъема сажи в стратосферу. А из тропосферы она с осадками упадет вниз за считаные недели и не сможет надолго помешать солнечному свету достигать поверхности планеты.
Не стоит ждать и вселенского голода: погибнут почти исключительно жители городов – то есть потребители, а не производители еды. Заражение полей будет умеренным и локальным, ведь удары не станут наносить по малозаселенной сельской местности. Да и долгоживущих изотопов после взрыва атомной бомбы остается довольно мало: вес делящегося вещества в бомбе слишком невелик. Уже на следующий год после ядерного удара радиация в полях редко где останется заметной угрозой.
Виды взрывов
Физический процесс, при котором в течение короткого промежутка времени происходит освобождение огромного количества энергии, называют ядерным взрывом. В зависимости от целей и задач, преследуемых использованием ядерного боеприпаса, различают несколько основных видов взрыва. Классификация видов ядерных взрывов и их характеристик, выглядит следующим образом:
- Высотный. Применяется для поражения космических и воздушных целей, а также для создания активных помех средствам радиотехнического контроля обстановки. Боеприпас подрывается выше границы тропосферы, то есть на высоте более 10 000 метров.
- Воздушный. Этот вид ядерного взрыва направлен на поражение наземных и воздушных объектов и производится на высоте, не превышающей 10 километров.
- Наземный или надводный взрыв производится с целью уничтожения складских и портовых сооружений, подземных бункеров и разрушения укрепленных надводных и наземных объектов.
- Подводный (подземный) взрыв. Производится посредством подрыва заранее заложенного боеприпаса или при помощи боеголовок, проникающих в толщу воды или грунта. Направлен на уничтожение портовых и гидротехнических объектов, разрушения плотин, устройств горных завалов. Основным поражающим фактором ядерного взрыва этого вида являются гравитационные волны, разрушающие береговую инфраструктуру.
Таким образом, существующая классификация взрывов атомных боеприпасов, позволяет определять их зависимость от выполнения конкретных задач.