10 взрывчатых веществ в предметах повседневного обихода

Октоген — полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

Разбудить демона

Как ни забавно, у «родственника» пикриновой кислоты — тринитротолуола — судьба оказалась сходной. Впервые он был получен немецким химиком Вильбрандом еще в 1863 году, но лишь в начале XX века нашел применение в качестве взрывчатого вещества, когда за его исследование взялся немецкий инженер Генрих Каст

В первую очередь он обратил внимание на технологию синтеза тринитротолуола — она не содержала опасных по взрыву этапов. Уже одно это было колоссальным преимуществом. Еще свежи были в памяти европейцев многочисленные ужасающие взрывы фабрик, производивших нитроглицерин

Еще свежи были в памяти европейцев многочисленные ужасающие взрывы фабрик, производивших нитроглицерин.

Трехмерная модель молекулы тринитротолуола.

Еще одним немаловажным достоинством была химическая инертность тринитротолуола — реакционная способность и гигроскопичность пикриновой кислоты изрядно досаждали конструкторам артиллерийских снарядов.

Полученные Кастом желтоватые чешуйки тринитротолуола проявили удивительно мирный нрав — настолько мирный, что многие сомневались в его способности к детонации. Сильные удары молотком плющили чешуйки, в огне тринитротолуол взрывался не лучше, чем березовые дрова, а горел гораздо хуже. Доходило до того, что в мешки с тринитротолуолом пытались стрелять из винтовок. Результатом были лишь облачка желтой пыли.

Но способ разбудить дремлющего демона был найден — впервые это произошло при подрыве мелинитовой шашки вплотную к массе тринитротолуола. А затем выяснилось, что если его сплавить в монолитный блок, то надежная детонация обеспечивается стандартным капсюлем-детонатором Нобеля №8. В остальном плавленый тринитротолуол оказался таким же флегматиком, как и до плавления. Его можно пилить, сверлить, прессовать, размалывать — словом, делать что заблагорассудится. Температура плавления 80°С чрезвычайно удобна с технологической точки зрения — на жаре не потечет, но и особых затрат на плавление не требует. Расплавленный тринитротолуол весьма текуч, его можно запросто заливать в корпуса снарядов и бомб через отверстие взрывателя. В общем, воплощенная мечта военных.

Под руководством Каста в 1905 году Германия получила первые сто тонн новой взрывчатки. Как и в случае с французским мелинитом, она была строго засекречена и носила ничего не значащее название «тротил». Но спустя всего лишь год стараниями российского офицера В. И. Рдултовского тайна тротила была раскрыта, и его стали изготавливать в России.

Метательные взрывчатые вещества, или пороха

Для этих веществ характерным видом взрывного превращения является горение, не переходящее в детонацию даже при высоких давлениях, которое развивается в условиях выстрела. Эти вещества используются для сообщения пуле или снаряду движения в канале ствола оружия и для сообщения движения ракетным снарядам.

Для возбуждения горения порохов необходимо действие на них пламени.

Пороха разделяются на две группы: пороха – механические смеси (и как разновидность — твердые ракетные топлива) и пороха на основе нитроклетчатки.

1. Пороха – механические смеси. До недавнего времени из этой группы веществ наиболее значительное практическое применение находил дымный (черный или охотничий) порох. Черный порох был изобретен в Китае 800 г. до н.э. Дымный порох состоит из гранул темно-зеленого или черного цвета. Он состоит из 75 % селитры (чаще калийной КNO3), 10-12 % угля и 12-16 % серы. Воспламеняется при температуре 270 – 300С, развивает температуру при взрыве 2200С, скорость горения до 300 м/с и давление до 6000 атмосфер.Горение черного пороха можно представить следующим уравнением: 2KNO3+ 3C+SN2+ 3CO2+K2S(тв)

При горении пороха селитра разлагается с выделением кислорода. Этот кислород необходим для горения угля и серы, которые играют роль горючего. Сера, кроме этого, является цементатором – цементирует частица угля и селитры.

Дымный порох мало чувствителен к удару, но очень чувствителен к пламени, он загорается в результате воздействия даже незначительной искры. Известны случаи воспламенения пороха в результате образовавшейся фрикционной искры от трения обуви с металлическими гвоздями о цементный пол. Порох воспламеняется при соприкосновении с пламенем, раскаленными телами, электрической искрой при нагревании до 270С, фрикционных искр. Самопроизвольно порох может взрываться только в том случае, если селитра содержит примеси хлора. Чувствительность пороха значительно уменьшается в присутствии влаги. При содержании влаги 15 % порох теряет способность к воспламенению.

Небольшие примеси жиров (2-10 %) понижают воспламеняемость пороха и замедляют сгорание. Препятствуют взрыву пороха и негорючие добавки, например, стеклянный порошок и тонкоразмолотый песок.

Ракетные топлива– твердосмесевые и пиротехнические топлива – представляют собой смеси окислителей, горючих и связующих веществ.

В качестве окислителей используется аммиачная селитра NH4NO3, перхлорат аммония NH4ClO4 и перхлорат калия КClO4. Связующими веществами являются асфальтовый битум, каучуки, карбамидные и фенолформальдегидные смолы, виниловые полимеры, полиэфиры и нитроцеллюлоза. В качестве горючего также используется алюминиевая пыль. Такое топливо может содержать, например, 70 % NH4ClO4, 10 % алюминия Al в порошке, 19 % каучуков или смол, 1 % специальных добавок. Горение смесевых твердых топлив часто переходит в детонацию. Кроме того, выделяющаяся энергия значительно превосходит энергию сгорания дымного пороха.

2. Нитроцеллюлозные пороха. Их основой являются нитраты целлюлозы, пластифицированные каким-либо растворителем. Пироксилиновые порохаизготавливаются таким способом, что летучий растворитель (пластификатор) по завершении процесса в значительной мере удаляется из пороховой массы.

Баллиститы– нитроцеллюлозные пороха, изготавливаемые с применением нелетучего растворителя, полностью остающегося в порохе. В зависимости от применяемого растворителя баллиститы называются нитроглицериновыми, нитродигликолевыми и т.д.

Кордиты — нитроцеллюлозные пороха, изготавливаемые на смешанном растворителе – летучем и нелетучем (например, глицерин с ацетоном).

Самовозгорание порохов обычно приводит к пожару, т.к. загоревшиеся пороха не детонируют. Категорически запрещено совместное хранение бризантных ВВ и пороха, загорание последнего может вызвать горение и последующую детонацию ВВ.

Признаки разложения порохов на основе нитроцеллюлозы:

  1. Изменение цвета пороховых элементов. Появление на их поверхности желто-бурых пятен.
  2. Повышение температуры пороха.
  3. Появление запахов оксидов азота.

При появлении данных признаков необходимо срочно удалить начинающий разлагаться порох из хранилища и уничтожить его. Если удалить порох невозможно, его необходимо интенсивно поливать водой. Тушить пороха водой огнетушителем или компактной струей обычно не удается. Вследствие сильного пламени при горении пороха его тушение в присутствии людей всегда связано с большим риском. Тушение порохов должно производиться с помощью автоматически действующих дренчерных или спринклерных устройств. При загорании больших количеств пороха работающие в помещении должны немедленно его покинуть.

Взрывчатый краситель

В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.

Трехмерная модель молекулы тринитрофенола.

Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.

В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.

Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.

Это интересно: позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.

Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.

В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота».

Немного истории

Человек испокон веков пытался создать вещества, которые при определенном воздействии извне вызвали взрыв. Естественно, делалось это далеко не в мирных целях. И одним из первых широко известных взрывчатых субстанций стал легендарный греческий огонь, рецепт которого до сих пор точно неизвестен. Затем последовало создание пороха в Китае приблизительно в VII веке, который как раз, наоборот, сначала использовали в развлекательных целях в пиротехнике, а лишь потом приспособили для военных нужд.

На несколько столетий утвердилось мнение, что порох является единственным известным человеку взрывчатым веществом. Только в конце XVIII века был открыт фульминат серебра, который небезызвестен под необычным названием “гремучее серебро”. Ну а после этого открытия появились пикриновая кислота, “гремучая ртуть”, пироксилин, нитроглицерин, тротил, гексоген и так далее.

Применение

Заряд C-4 на морской якорной цепи

Пластиковые взрывчатые вещества особенно подходят для взрывного разрушения препятствий и укреплений со стороны инженеров , военных инженеров и преступников , поскольку они могут быть легко сформированы в лучшие формы для резки конструктивных элементов и имеют достаточно высокую скорость детонации и плотности для резки металла работы.

Вначале пластиковая взрывчатка использовалась в боеголовке компании British Armoured Vehicle Royal Engineers (AVRE); Указанный миномет использовался для разрушения бетонных укреплений, обнаруженных во время операции «Оверлорд» (день «Д»). Изначально Nobel 808, поставляемый SOE для саботажа немецких сооружений и железных дорог в оккупированной Европе .

Как правило, они не используются для обычных взрывных работ, так как они, как правило, значительно дороже, чем другие материалы, которые так же хорошо работают в этом приложении. Обычное коммерческое использование пластических взрывчатых веществ — ударная закалка стали с высоким содержанием марганца , материала, обычно используемого для компонентов железнодорожных поездов и землеройных орудий.

В реактивной броне танков используется пластиковая взрывчатка, зажатая между двумя стальными пластинами. Входящие фугасные противотанковые снаряды пробивают внешнюю стальную пластину, а затем детонируют пластиковую взрывчатку. Это поглощает энергию приближающегося танкового снаряда и защищает танк.

Южно-Китайское море

Проснувшись на корабле проходим оп коридорам в поисках Ирландца, в конце концов встретив Пака следуем за ним пока всё же не встретимся с Ирландцем. Далее все вместе идём на встречу с Гаррисоном по дороге увидев горящий авианосец “Титан”. После разговора с капитаном вооружаемся и отправляемся за агентом Ковиком, добравшись до катера встаём за штурвал нажав кнопку Е. Далее плывём к авианосцу, оплываем его вокруг в поисках пробоины через которую можно пробраться внутрь. Обнаружив дыру в борту заезжаем туда на катере после чего движемся по коридорам корабля за бойцами своего отряда в поисках люка G-46. Обнаружив помещение с люком G-46 загляните в коридор напротив, там на ящике можно найти пистолет-пулемёт P90. В итоге открыв люка G-46 прыгаем в воду и плывём по затопленным коридорам в след за Ирландцем, чтобы выбраться из воды нажмите пробел. Далее открыв дверь бежим по коридорам и через машинное отделение доберёмся до выживших, которых придётся бросить. Двигаясь дальше забираем регистратор данных после чего нужно будет выбраться с “Титана” и вернуться на “Валькирию”.

Открыв следующую дверь стреляем по врагам так же не забыв указать цели другим членам отряда, зачистив помещение от врагов открываем следующую дверь попав в коридор с очередными вражескими бойцами. Не успеете толком прицелится как корабль разломится пополам, встав на ноги прыгаем на палубу на которой атакуем очередные силы противника, и в конце концов перебив всех врагов прыгаем с палубы в воду вслед за остальными. Далее захватив китайский катер возвращаемся на “Валькирию” уничтожая по дороге вражеские катера, а так же вертолёт. После уничтожения вертолёта заезжаем внутрь корабля через колодезную палубу, выбравшись из катера сразу вступаем в бой с вражескими бойцами и начинаем прорываться к мостику. Двигаясь вперёд увидим вражеские вертолёты атакующие капитанский мостик, подобрав из ящика с гаджетами стингер сбиваем вертолёты после чего проходим в следующее помещение, где снова вступаем в перестрелку с китайцами.

Уничтожив врагов движемся в мед отсек и пока Пак ломает дверь смотрим как китаянка которую спасали в предыдущей миссий врукопашную дерётся с солдатами врага). Из мед отсека поднимаемся на палубу где снова уничтожаем врагов, после чего помогаем Ковику освободить лестнице нажав Е и лезем по ней на вверх за Ковиком. Упав после взрыва на палубу берём стингер и сбиваем вражеские транспортные вертолёты пока те не высадили бойцов, так же можно давать целеуказание ПВО “Валькирии”. Уничтожив вертушки возвращаемся к раненому Ковику, и получив от него регистратор с данными лезем по лестнице наверх. Добравшись до мостика и уничтожив вражеских солдат освобождаем капитана закончив таким образом прохождение данной главы.

Гексоген

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Список пластических взрывчатых веществ

Два блока Semtex -1H (обратите внимание на характерный оранжевый цвет) и американский заряд M112, содержащий C4

  • Австралия: PE4, PE4-MC
  • Австрия: KNAUERIT SPEZIAL
  • Чешская Республика: Semtex -1H (оранжевый), Semtex 1A (красный), Semtex 10 (также называемый Pl Np 10; черный), Pl Hx 30 (серый)
  • Финляндия: PENO
  • Франция: Hexomax, композиция C-4 PLASTRITE (FORMEX P1, Pla Np 87)
  • Германия: Sprengkörper DM12 , P8301, Seismoplast 1 ( Sprengmasse , формбар)
  • Нидерланды: Knaverit S1 (светло-оранжевый)
  • Греция: C3, C4
  • Индия: ПЭК-1
  • Израиль: Semtex
  • Италия: Т-4 Пластико
  • Норвегия: NM91 ( HMX ), C4, DPX10 (PE8)
  • Польша: PMW, NITROLIT
  • Россия: пластическое взрывчатое вещество ПВВ-5А
  • Словакия : CHEMEX (эквивалент композиции C-4), TVAREX 4A, Pl Hx 30
  • Южная Африка: PE9 (эквивалент состава C-4)
  • Швеция: Sprängdeg m / 46, NSP711 (на основе PETN ), NSH711 (на основе циклонита)
  • Швейцария: PLASTEX производства SSE
  • Соединенное Королевство
    • Взрывчатые вещества MOD: PE2 (листовое взрывчатое вещество, заменено SX2), PE3A (заменено PE4), PE4 (чисто-белая плита, блок или палка, заменено PE7 и PE8 при использовании MOD), SX2 (листовое взрывчатое вещество, заменено по SX4), PE7 (от чистой до грязно-белой плиты или блока, вариант Hexomax), PE8 (от чистой до грязно-белой плиты или блока, текущий действующий заряд плиты), SX4 (листовая взрывчатка), DPX (DPX1 используется в L26A1 Бангалорский подрыв торпеды, DPX9, используемый в SABREX)
    • Взрывчатые вещества, не относящиеся к MOD: Состав C-4 (заряды M5A1 и M112 производства Mondial Defense Systems), Semtex (несколько вариантов, включая Razor производства Mondial Defense Systems, вариант PW4 производства Chemring ))
  • США: состав C-4 (чистый белый блок или лист, текущая плата за обслуживание обозначена как M112 и M118)
  • Югославия / Сербия : PP – 01 (эквивалент композиции C-4)

Начало в жидком виде

История современных взрывчатых веществ начинается в 1846 году, когда итальянский ученый Асканио Собреро впервые получил нитроглицерин — сложный эфир глицерина и азотной кислоты. Собреро достаточно быстро обнаружил взрывчатые свойства бесцветной вязкой жидкости и потому поначалу назвал полученное соединение пироглицерином.

Альфред Нобель — человек, создавший динамит.
Трехмерная модель молекулы нитроглицерина.

По современным представлениям нитроглицерин — весьма посредственная взрывчатка. В жидком состоянии он слишком чувствителен к удару и нагреву, а в твердом (охлажденном до 13°С) — к трению. Фугасность и бризантность нитроглицерина сильно зависят от способа инициирования, а при использовании слабого детонатора мощность взрыва сравнительно невелика. Но тогда это было прорывом — мир еще не знал подобных веществ.

Практическое использование нитроглицерина началось лишь спустя семнадцать лет. В 1863 году шведский инженер Альфред Нобель конструирует пороховой капсюль-воспламенитель, позволяющий использовать нитроглицерин в горном деле. Спустя еще два года, в 1865 году, Нобель создает первый полноценный капсюль-детонатор, содержащий фульминат ртути. При помощи такого детонатора можно инициировать практически любое бризантное взрывчатое вещество и вызвать полноценный взрыв.

В 1867 году появляется первая взрывчатка, пригодная для безопасного хранения и транспортировки, — динамит. Девять лет потребовалось Нобелю на то, чтобы довести технологию производства динамита до совершенства — в 1876 году был запатентован раствор нитроцеллюлозы в нитроглицерине (или «гремучий студень»), который до сегодняшнего дня считается одним из самых мощных взрывчатых веществ бризантного действия. Именно из этого состава готовился знаменитый динамит Нобеля.

Выдающийся химик и инженер Альфред Нобель, фактически изменивший лицо мира и давший реальный толчок развитию современной военной и, косвенно, космической технике скончался в 1896 году, прожив 63 года. Имея слабое здоровье, он так увлекался работой, что часто забывал поесть. На каждом из его заводов строилась лаборатория, чтобы неожиданно приехавший хозяин мог продолжить эксперименты без малейшей задержки. Он был и генеральным директором своих заводов, и главным бухгалтером, и главным инженером и технологом, и секретарем. Жажда познания была основной чертой его характера: «Вещи, над которыми я работаю, действительно чудовищны, но они так интересны, так совершенны технически, что становятся привлекательными вдвойне».

Взрывчатые вещества в военном деле

Взрывчатые вещества находят применение в военном деле повсеместно. Взрыв бывает двух типов: горение и детонация. Из-за того, что порох горит, при его взрыве в замкнутом пространстве происходит не разрушение гильзы, а образование газов и вылет пули или снаряда из ствола. Тротил, гексоген или аммонал как раз детонируют и создают взрывную волну, давление резко возрастает. Но для того, чтобы произошел процесс детонации, необходимо воздействие со стороны, которое может быть:

  • механическим (удар или трение);
  • тепловым (пламя);
  • химическим (реакция взрывчатого вещества с ещё каким-либо веществом);
  • детонационным (происходит взрыв одного взрывчатого вещества рядом с другим).

Исходя из последнего пункта, становится ясно, что можно выделить два больших класса взрывчатых веществ: композитные и индивидуальные. Первые в основном состоят из двух или более веществ, которые не связаны между собой химически. Бывает, что по отдельности такие компоненты не способны к детонации и могут проявить подобное свойство только при контакте друг с другом.

Также помимо главных компонентов в составе композитного взрывчатого вещества могут находиться различные примеси. Назначение их также является весьма широким: регулирование чувствительности или фугасности, ослабление взрывных характеристик или их усиление. Так как в последнее время мировой терроризм все больше и больше распространяется с помощью примесей, стало возможным обнаружить, где было изготовлено взрывчатое вещество, и найти его с помощью служебных собак.

С индивидуальными все понятно: иногда для положительного теплового выхода им не требуется даже кислород.

Виды и типы взрывов

Выделяют три основных типа взрывов. Каждый из них может быть одинаково разрушительным и причинять колоссальный ущерб населению, инфраструктуре, окружающей среде.

Химические взрывы происходят в результате реакций разложения или соединения, сопровождающихся выделением теплоты. Следствием этого становится быстрое расширение выделяемого газа и образование ударной волны.

При механическом (физическом) взрыве внутри ограниченного пространства происходит расширение газа под высоким давлением. Выброс за пределы пространства избыточного давления создает ударную волну.

Ядерный взрыв происходит в результате реакции синтеза или деления, при которой очень быстро выделяется большое количество тепла и газа. Высвободившаяся энергия нагревает окружающий воздух и создает взрывную волну.

Вид взрыва зависит от свойств горючих материалов и их взаимодействия с атмосферным кислородом, который горит только с определённым количеством горючей субстанции (процесс окисления). В зависимости от силы взрыва и связанной с ним скорости распространения волны давления различают:

  • низкоскоростную детонацию;
  • дефлаграцию, или распространение процесса горения с дозвуковой скоростью;
  • детонацию, или распространение взрыва со сверхзвуковой скоростью.

Следствием всех типов взрывов являются ударное, тепловое и вибрационное воздействия на объекты, нередко приводящие к их разрушению или уничтожению.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector