Физическая природа планет и малых тел в солнечной системе
Содержание:
- Планета Марс интересные факты
- Более свежие значения
- Почему Марс красный?
- Жизнь на Марсе
- Состав Солнечной системы
- Рассматриваемые методы колонизации Марса
- Марс: гипотезы, факты и поиски жизни
- Описание поверхности Марса
- Первый посадочный аппарат, исследовавший Марс
- Есть ли жизнь на Марсе?
- Характеристики планеты
- Искусственный магнитный щит Марса: технические характеристики
- Планеты земной группы
Планета Марс интересные факты
- Американская компания Space X работает над созданием первого транспортного межпланетного пилотируемого корабля. Основная цель проекта: доставка людей на марсианскую поверхность с целью создания самоподдерживаемой колонии.
- Большую роль в популярности Красной планеты сыграли писатели-фантасты, описывающие существование разумных форм жизни на планете – зеленых человечков, или марсиан.
- Самая длительная за всю историю наблюдений пылевая буря на Марсе длилась с сентября 1971 года по декабрь 1972 года. Она была настолько сильной, что полностью скрыла рельеф горы Олимп от орбитальных спутников.
- Фобос и Деймос были описаны еще за 150 лет до своего открытия в книге «Путешествия Гулливера» Дж. Свифта. Писатель представлял их в виде двух марсианских лун.
- Лучшее время для наблюдений за – момент марсианского противостояния, когда Земля красный сосед находится на максимально близком расстоянии от своего красного соседа. В это время он хорошо виден на протяжении всей ночи. Это редкое явление возникает раз в 15-17 лет и длится в течение 2 недель. Последний раз Великое противостояние наблюдалось 27 июля 2018 года.
- Специалисты НАСА проводят дискуссии по поводу терраформирования земного соседа. Для этого требуется провести контролируемую бомбардировку марсианской поверхности мелкими телами из главного пояса астероидов. Это разогреет планету и пополнит ее запасами водяного пара и газов. Формирование магнитного поля возможно путем серии термоядерных взрывов вблизи ядра, что приведет его в жидкое состояние.
- Почва Марса пригодна для выращивания на ней некоторых видов растений – турнепса и спаржевой фасоли.
- На Земле закаты имеют золотисто-красный оттенок, а вот при наблюдениях с поверхности ее соседа заходящее Солнце приобретает синий цвет.
Более свежие значения
Создание полных и высокоточных эфемерид Солнечной системы — непростая задача. Возможно (и несколько проще) построить частичные эфемериды, относящиеся только к интересующим планетам (или карликовым планетам, спутникам, астероидам), «зафиксировав» движение других планет в модели. Эти два метода не являются строго эквивалентными, особенно когда дело доходит до определения неопределенностей результатов: однако «наилучшие» оценки — по крайней мере, с точки зрения указанных неопределенностей в результате — для масс малых планет и астероидов обычно получаются из частичных эфемериды.
Тем не менее, новые полные эфемериды продолжают готовиться, в первую очередь эфемериды EPM2004 от Института прикладной астрономии Российской академии наук . EPM2004 основан на 317 014 отдельных наблюдениях между 1913 и 2003 годами, что более чем в семь раз больше, чем DE405, и дал более точные массы Цереры и пяти астероидов.
EPM2004 | Витальяно и Штосс (2006) | Браун и Шаллер (2007) | Толен и др. (2008) | Питьева и Стэндиш (2009) | Рагоззин и Браун (2009) | |
---|---|---|---|---|---|---|
136199 Эрис | 84,0 (1,0) × 10 −4 | |||||
134340 Плутон | 73,224 (15) × 10 −4 | |||||
136108 Хаумеа | 20,1 (2) × 10 −4 | |||||
1 Церера | 4,753 (7) × 10 −4 | 4,72 (3) × 10 −4 | ||||
4 Веста | 1,344 (1) × 10 −4 | 1,35 (3) × 10 −4 | ||||
2 Паллада | 1,027 (3) × 10 −4 | 1,03 (3) × 10 −4 | ||||
15 Евномия | 0,164 (6) × 10 −4 | |||||
3 Юнона | 0,151 (3) × 10 −4 | |||||
7 Ирис | 0,063 (1) × 10 −4 | |||||
324 Бамберга | 0,055 (1) × 10 −4 |
Почему Марс красный?
Почему именно Марс называют красной планетой все дело в том, что окрас поверхности сравним с цветом ржавчины. Многие камни и метеориты на планете содержат железо, окисляясь, они принимают красноватый оттенок примерно так же, как ржавеет, метал на земле. Это становится очевидным при изучении полученных данных, сделанных марсоходами. При проведении исследований выяснилось, поверхность планеты по соседству с нами действительно преимущественно красного цвета. В качестве вещества, придающего почве и атмосфере красный оттенок, выступает продукт окисления железа – маггемит, напоминающий ржавчину.
Вещество придает грунту особый багряный оттенок, из-за чего вопроса какая планета в Солнечной системе является красной, не возникает: под это описание попадает только Марс.
Жизнь на Марсе
Положение планеты относительно Солнца, наличие русел рек, довольно щадящие климатические параметры, всё это позволяет надеяться на существование жизни на ней в каком-либо варианте. Если предположить, что жизнь на планете когда-то существовала, то какие-то организмы могут сохраниться и теперь. Некоторые учёные даже заявляют о нахождении доказательств этого. Они делают такие выводы после изучения метеоритов, попавших на Землю прямо с Марса. В них находились некие органические молекулы, но одно их наличие не доказывает существование жизни на Марсе, пусть даже примитивной.
Зато в наличии воды на красной планете никто не сомневается. Полярные шапки в зависимости от сезона изменяют свои размеры, это служит доказательством их таяния. Следовательно, вода на Марсе в как минимум в твёрдом состоянии присутствует.
Именно планета Марс является оптимистическим будущим человечества. Вполне возможно, что жизнь на Земле появилась, перебравшись с поверхности красного соседа. И дальнейшую судьбу свою человечество связывает тоже с ним, рассчитывая в случае катаклизма переселиться туда.
Состав Солнечной системы
Большая часть массы Солнечной системы приходится на Солнце. Оставшаяся распределена между 8 отдаленными друг от друга планетами. Все эти планеты расположены в одной плоскости, имеют орбиты, близкие по очертаниям к круговым.
Четыре ближайшие к звезде планеты составляют земную группу:
- Земля;
- Марс;
- Меркурий;
- Венера.
Четыре остальные планеты находятся на значительном отдалении, входят в состав группы газовых гигантов:
- Сатурн;
- Юпитер;
- Нептун;
- Уран.
Общий вид и порядок расположения групп отображен на схематичном рисунке ниже:
На схеме видно, что газовые гиганты по размеру значительно превосходят планеты земной группы, являются более массивными.
Также структура Солнечной системы включает в себя две области, заполненные малыми телами:
- Пояс астероидов, расположенный между Юпитером и Марсом. Его крупнейшими объектами являются астероиды Веста, Гигея, Паллада, а также карликовая планета Церера.
- Область за орбитой Нептуна, в состав которой входят состоящие из аммиака, метана и замерзшей воды транснептуновые объекты — Седна, Плутон, Макемаке, Хаумеа, Орк, Эрида, Квавар.
Кроме того, в системе присутствуют околоземные астероиды, дамоклоиды, кентавры, планетные квазиспутники, троянцы, постоянно передвигающиеся метеороиды, кометы и космическая пыль.
Рассматриваемые методы колонизации Марса
За последние десятилетия возникало множество предложений о способах создания колоний на Марсе. В 1964 году Дандридж Коул выступал за активацию парникового эффекта – доставка аммиачных льдов на поверхность планеты. Это мощный парниковый газ, поэтому должен загустить атмосферу и повысить температуру Красной планеты.
Ученым удалось вывести скорость потери воды через измерение соотношения воды в сегодняшнем состоянии и моделями 4.3 млрд. лет назад
Еще один вариант – уменьшение альбедо, где марсианскую поверхность покроют темным материалом, чтобы сократить поглощение звездных лучей. Эту идею поддерживал Карл Саган. В 1973 году он даже предложил два сценария для этого: доставка низколегированного материала и посадку темных растений на полярных территориях, чтобы расплавить ледяные шапки.
В 1982 году Кристофер Маккей написал статью о концепции саморегулируемой марсианской биосферы. В 1984 году Д. Лавлок и М. Албаби предложили импортировать хлорфторуглероды, чтобы создать глобальное потепление.
Художественная интерпретация возможных растений, согревающих Красную планету
В 1993 году Роберт Зубрин и Кристофер Маккей предложили разместить орбитальные зеркала, которые бы увеличили нагрев. Если расположить их возле полюсов, то можно было бы расплавить ледяные запасы. Также они голосовали за использование астероидов, которые при ударах накаляют атмосферу.
В 2001 году поступила рекомендация о применении фтора, который в качестве парникового газа в 1000 раз эффективнее СО2. Причем эти материалы можно добывать на Красной планете, а значит можно обойтись без земных поставок. Нижний рисунок демонстрирует концентрацию метана на Марсе.
Исследователи НАСА отметили колебания метановой концентрации в атмосфере. Это говорит о том, что он все время пребывает и убывает
Также предлагали доставлять метан и прочие углеводороды из внешней системы. Их много на Титане. Есть идеи по созданию закрытых биодомов, где будут использовать кислородосодержащие цианобактерии и водоросли, посаженные в марсианскую почву. В 2014 году проводили первые испытания и ученые продолжают развивать концепцию. Такие конструкции способны создать определенные кислородные запасы.
Процесс «марсианского озеленения» включает импорт газов и земных организмов для планетарных трансформаций
Марс: гипотезы, факты и поиски жизни
Двадцатого июля 1976 года на поверхность планеты Марс в местности, названной Хризе, опустился посадочный отсек американской автоматической станции «Викинг-1».
Шестого сентября примерно в 1000 километрах к северу, на равнине Утопия сел «Викинг-2».
Обе станции передали черно-белые и цветные снимки марсианского ландшафта, сведения о составе грунта и атмосферы, провели некоторые эксперименты с целью установить, есть ли жизнь на Марсе.
Одна из основных задач «Викингов» — поиски жизни на Марсе. Посадочный отсек несет компактную биологическую лабораторию с приборами для некоторых опытов и анализов.
Раздвижная механическая рука с совком, набрав грунт, засыпает его в дозатор, который распределяет пробы по трем отсекам биологической лаборатории.
На отсек приходится один-два кубических сантиметров грунта.
В первом отсеке, заполненном радиоактивной двуокисью углерода, проба подвергается освещению лучами лампы, имитирующей Солнце.
Если в грунте есть фотосинтезирующие организмы типа земных, они построят из радиоактивного углерода органические соединения.
Через некоторое время камера продувается инертным газом, а грунт нагревают до высокой температуры. Органические соединения при этом должны разложиться, превратившись в радиоактивный газ. Проба газа перекачивается к счетчику, измеряющему радиоактивность. Если двуокись углерода была усвоена живым организмом, то радиоактивность будет повышенной.
Во втором отсеке к пробе грунта добавляют жидкую питательную среду, которая пришлась бы по вкусу любому из земных микроорганизмов. В ней также присутствуют меченые соединения углерода. Через некоторое время благодаря дыханию микроорганизмов эти соединения должны появиться в воздухе отсека, где их отметит счетчик радиоактивности.
В третьем отсеке проба частично смачивается питательной жидкостью, а частично остается сухой. Атмосфера состоит из гелия, криптона и двуокиси углерода. Периодически отсасываемые из отсека пробы атмосферы анализируются автоматическим газовым хроматографом — масс-спектрографом.
Этот прибор сортирует молекулы, содержащиеся в анализируемом веществе, определяет их массу и количество. В воздухе третьего отсека он ищет кислород, водород, азот, метан и двуокись углерода — газы, которые могут выделяться гипотетическими почвенными организмами.
Предполагается, что приборы станции могут найти и остатки жизни, если она существовала в прошлом на Марсе. Одна проба почвы поступает в газовый хроматограф — масс-спектрограф без всякой предварительной обработки, без добавления питательных жидкостей. Прибор должен выявить в почве неживые органические соединения — результат жизнедеятельности вымерших организмов.
Предусмотрена и маловероятная возможность того, что вокруг приземлившейся станции будут бегать какие-то крупные животные. Сканирующие телекамеры осматривают окружающий пейзаж слишком медленно, они не успеют передать на Землю изображение движущегося объекта.
Но время от времени вращение камеры прерывается, и она «вглядывается» в узкую полоску, оказавшуюся непосредственно перед объективом. Если за это время в поле зрения что-то быстро промелькнет, сигнал об этом будет послан на Землю. Таких случаев пока не было.
Описание поверхности Марса
Поверхность Марса весьма разнообразна. Кроме гор, равнин, полярных льдов, практически вся поверхность густо усеяна кратерами. К тому же всю планету окутывает мелкозернистая красноватая пыль.
Равнины
Большая часть поверхности состоит из плоских, низменных равнин, которые в основном расположены в северном полушарии планеты. Одна из таких равнин является самой низменной и относительно гладкой среди всех равнин солнечной системы. Такая гладкость, вероятно, была достигнута отложениями осадочных пород (крошечные частицы, которые оседают на дне жидкости), сформированных в результате нахождения воды в этом месте — что является одним из доказательств того, что когда-то на Марсе была вода.
Каньоны
Вдоль экватора планеты расположено одно из самых поразительных мест — система каньонов известная как долина Маринера, названная в честь космической научно-исследовательской станции «Маринера-9», которая первая обнаружила долину в 1971 году. Долина Маринера простирается с востока на запад и в длину составляет приблизительно 4000 км, что равно ширине континента Австралия. Ученые считают, что эти каньоны образовались в результате раскола и растяжения коры планеты, глубина в некоторых местах достигает 8–10 км.
Долина Маринера на Марсе. Фото с сайта astronet.ru
С восточной части долины выходят каналы, а в некоторых местах обнаружены слоистые отложения. Основываясь на этих данных можно предполагать, что каньоны были заполнены частично водой.
Вулканы на Марсе
На Марсе расположен самый большой вулкан в солнечной системе — вулкан Olympus Mons (перевод с лат. Гора Олимп) высотой 27 км. Диаметр горы составляет 600 км. Три других больших вулкана — горы Арсия, Аскреус и Повонис, расположены на огромном вулканическом нагорье, называемом Тарсис.
Все склоны вулканов на Марсе постепенно повышаются, аналогично вулканам на Гавайях. Гавайские и Марсианские вулканы являются ограждающими, формирующиеся из извержения лавы. В настоящее время не найдено ни одного действующего вулкана на Марсе. Следы вулканического пепла на склонах других гор позволяют предположить, что раньше Марс был вулканически активным.
Кратеры и бассейны рек Марса
Большое количество метеоритов нанесли ущерб планете, образовав на поверхности Марса кратеры. На Земле редко встречается явление ударных кратеров по двум причинам: 1) те, кратеры, которые образовались в начале истории планеты, уже размыты; 2) Земля имеет очень плотную атмосферу,которая препятствует падению метеоритов.
Марсианские кратеры аналогичны кратерам на луне и другим объектам солнечной системы, которые имеют глубокое, чашеобразное дно с приподнятыми колесообразными краями. Большие кратеры могут иметь центральные пики, формирующиеся в результате ударной волны.
Улыбающийся кратер. Фото с сайта astrolab.ru
Количество кратеров на Марсе изменяется от места к месту. Практически все южное полушарие усыпано кратерами разных размеров. Самым крупным кратером Марса является бассейн Эллада ( лат. Hellas Planitia) в южном полушарии, диаметр которого составляет приблизительно 2300 км. Глубина впадины — около 9 км.
На поверхности Марса обнаружены каналы и долины рек, многие из которых были разлиты по низменным равнинам. Ученые предполагают, что марсианский климат был достаточно теплым, раз вода существовала в жидком виде.
Полярные месторождения
Наиболее интересной особенностью Марса являются толстые накопления мелко слоистых отложений, расположенных в обоих полюсах Марса. Ученые считают, что слои состоят из смеси водяного льда и пыли. Атмосфера Марса, вероятно хранила эти слои в течении длительного периода. Они могут служить доказательством сезонной активности погоды и долгосрочным изменением климата. Шапки льда обоих полушарий Марса остаются замороженными в течении всего года.
Первый посадочный аппарат, исследовавший Марс
Марсоход НАСА Curiosity сделал собственный автопортрет на фоне Красной Планеты
В 1971 году СССР сумели безопасно приземлить Марс-3. Удалось получить сведения о топографии, геологии и атмосфере. К сожалению, камеры отключились через 20 секунд после посадки. Детали получили уже от Маринера-9 НАСА. Новая информация подпитывала интерес аудитории, которая высматривала каналы, пирамиды и гуляющих марсиан. Но всего этого не оказалось.
В 1976 году прибыли Викинг 1 и 2, которые передавали информацию до 1982 года. С их помощью удалось провести ряд научных биологических экспериментов в марсианской почве, чтобы отыскать признаки жизни. Правда все находки были спорными.
В 1996 году отправили Mars Pathfinder. Это был важный момент, так как удалось спустить подвижный ровер. Он проанализировал почву, провел метеорологический обзор и передал множество фото окрестностей Марса.
Есть ли жизнь на Марсе?
Ученые считают, что Марс имеет три основные составляющие необходимые для жизни:
- химические элементы, такие, как углерод, водород, кислород и азот, при помощи которых образуются органические элементы;
- источник энергии, который могут использовать живые организмы;
- вода в жидком виде.
Исследователи предполагают: если когда-то на Марсе была жизнь, значит живые организмы могут существовать и сегодня. В доказательство они приводят следующие доводы: основные необходимые для жизни химические элементы, вероятно, присутствовали на планете на протяжении всей ее истории. Источником энергии могло служить солнце, а также внутренняя энергия самой планеты. Вода в жидком виде тоже могла существовать, раз на поверхности Марса обнаружены каналы, рвы и огромное количество льда, высотой более 1 м. Следовательно, вода и сейчас может существовать в жидком виде под поверхностью планеты. А это доказывает возможность существования жизни на планете.
В 1996 году, ученые во главе с Дэвидом С.Маккейном сообщили, что нашли доказательства существования микроскопической жизни на Марсе. Их доказательства подтверждались метеоритом, который упал на Землю с Марса. Доказательства это группы ученных включали в себя сложные органические молекулы, зерна минерала магнетита, которые могут образовываться в рамках некоторых видов бактерий, и крошечные соединения, которые напоминают окаменелые микробы. Однако выводы ученых весьма противоречивы. Но до сих пор нет общих научных соглашений о том, что на Марсе никогда не было жизни.
Характеристики планеты
Орбитальные характеристики планеты такие:
- расстояние от Солнца до Марса в минимуме – 206 млн. километров;
- расстояние от Марса до Солнца в максимуме – свыше 249 млн. километров;
- длина большой полуоси около 2,28∙1011 м;
- эксцентриситет орбиты – более 0,09;
- длительность года (время обращения вокруг Солнца) – почти 669 суток;
- скорость движения по орбите – 24 км/с;
- наклон оси – немногим больше 25 градусов (благодаря этому на планете наблюдаются четкие смены сезонов);
- радиус Марса по экватору – 3 тыс. 392 км;
- радиус по полюсам – 3 тыс. 376 км;
- площадь поверхности – свыше 144 млн. кв. км;
- объем – 163 млрд. куб. км;
- масса – 6,41∙1020 тонн (641 квинтиллион);
- сила притяжения – 3,7 м/с2;
- первая космическая скорость Марса – 3,55 км/с;
- вторая космическая скорость -5,03 км/с;
- продолжительность суток (период вращения вокруг оси) – 24 ч. 37 м;
- видимая звездная величина колеблется от почти –3 и до почти 1,9;
- температура на поверхности от –153 до 35 градусов Цельсия;
- давление атмосферы на поверхности – 6,5 мм.рт.ст.
- атмосфера на 95% состоит из углекислого газа, на 2,7% — из азота. Остальные газы – аргон, кислород, водяной пар, оксид азота и прочие.
Размеры Марса позволяют отнести его к планетам земной группы. Отличительная его особенность – наличие больших кратеров, гор, долин. Встречаются также полярные шапки.
Физические характеристики Марса
Эта планета почти вдвое меньше Земли. Ее полярный радиус несколько меньше экваториального, что связано со сжатием. Масса Марса в 10 раз меньше земной. Плотность Марса также ниже (составляет всего 70% аналогичного показателя у Земли). Из-за меньшей массы сила тяжести в два с половиной раза слабее земной и почти такая, как у Меркурия.
Сравнение размеров Земли и Марса
Неизвестно, могут ли такие физические характеристики Марса вызвать различные заболевания у человека при долговременном проживании на планете. В случае неблагоприятного воздействия сниженной силы тяжести рассматриваются варианты работы центрифуг, имитирующих привычное тяготение.
Сутки на Марсе на 37 минут дольше земных. Для обозначения промежутка времени, когда планета делает оборот вокруг оси, используют термин «сол».
Орбитальные характеристики Марса
Марс и Земля отличаются своими орбитами. Удаленность Красной планеты от Солнца в 1,5 раза больше земной. Из-за этого продолжительность года равняется почти 687 дням. Отдаленность планеты от Солнца колеблется в более широких пределах из-за того, что орбита Марса несколько вытянута по сравнению с земной.
Благодаря наклону оси Марса на нем выражены сезонные смены погоды. Особенности эксцентриситета влияют на движение планеты по орбите. Следовательно, в северном полушарии лето длится 6 месяцев, весна – 7, осень – немногим больше 5, а зима – всего 4 месяца. В южном полушарии все наоборот: осень является наиболее продолжительной, а лето – самым коротким.
Марсианская орбита влияет и на погоду: из-за ее вытянутости и наклона эклиптики образуются пылевые бури. Они могут охватывать всю поверхность. Частота этих погодных явлений увеличивается по мере приближения планеты к Солнцу.
Химический состав
Состав Марса повторяет структуру Земли. Здесь так же есть ядро, мантия и кора. В ядре содержится в значительном количестве никель, сера и железо. Мантия богата силикатными соединениями. В марсианской коре обнаружены такие элементы:
- железо;
- магний;
- кислород;
- кальций;
- кремний;
- калий;
- алюминий.
Строение Марса подобно земному. В нем также много железа и кремния. В области мантии давление достигает 17 ГПа. Ядро Марса, по предположению ученых, жидкое.
Искусственный магнитный щит Марса: технические характеристики
Марсианская точка Лагранжа расположена на расстоянии около 1 миллиона километров от Марса. С поправкой на компенсацию сильных солнечных вспышек можно предположить, что будет достаточно расширить искусственное магнитное поле на расстояние 1,5 млн километров от планеты.
Также следует учитывать, что интенсивность солнечного ветра на марсианской орбите значительно ниже, чем на расстоянии одной астрономической единицы от Солнца (т.е. на расстоянии от Солнца до Земли). Таким образом, для защиты Марса от солнечного ветра достаточно получить магнитное поле примерно вдвое слабее, чем понадобилось бы для защиты Земли. Учитывая оба этих фактора, понадобится сгенерировать вокруг Марса магнитное поле всего в 11% от силы естественного магнитного поля Земли, и минимальный радиус магнитослоя вокруг Марса составил бы всего 500 000 километров.
Согласно уравнению величины магнитного поля, можно высчитать силу тока «провода», необходимого для генерации такого магнитного поля. Получается ток силой около 200 мега-ампер.
Соответственно, это будет провод колоссального размера. Чтобы сделать его как можно компактнее, необходимо как можно сильнее уменьшить рабочее напряжение этого провода и, следовательно, его сопротивление. Чтобы добиться минимального сопротивления, нужно подобрать минимальную длину провода, при этом обеспечив для него максимальную площадь поперечного сечения. Отметим, что сопротивление проводника можно было бы снизить, изготовив его из сверхпроводящего материала, но технически наиболее доступной конфигурацией представляется плоская медная катушка, намотанная настолько плотно, что отверстие в ее центре будет как можно уже. При этом отверстие в центре катушки необходимо оставить, так как при его отсутствии в катушке возникнут контрпродуктивные обратные токи, и ее сопротивление будет чрезмерно сильным.
Остается вопрос о том, какой источник энергии позволил бы запитать подобную конструкцию на орбите Марса. Для этого определенно не подойдут солнечные панели, так как солнечное излучение на орбите Марса довольно слабое, и даже сконструировав солнечные панели площадью 4000 м2 и обладающие КПД 20%, нам потребовалось бы для производства проводника больше меди, чем в принципе имеется на Земле. Более эффективным энергетическим решением был бы 830-мегаваттный ядерный реактор, работающий на орбите Марса и запитывающий магнитный контур. В таком случае напряжение в системе составило бы всего 2 вольт, а размеры медной катушки – 3,5 метров в диаметре при весе около 57 тонн. По расчетам автора, такая катушка позволила бы генерировать магнитное поле около 81 тесла. При этом необходимо было бы решить дополнительные технические проблемы, связанные с отводом избыточной теплоты от контура во избежание его деформации, а также обеспечить доставку 40 тонн урана в марсианскую точку Лагранжа каждые два года (следует оговориться, что мы пока не можем оценить запасы урана на Марсе, поэтому последняя проблема может решаться проще, чем кажется на первый взгляд).
Дальнейшие выкладки из упомянутой статьи выходят за рамки данной публикации, но ее все-таки будет интересно прочесть целиком – в частности, чтобы познакомиться с ориентировочными характеристиками космического корабля, необходимого для реализации всего проекта.
Итак, генерация искусственного магнитного поля для Марса представляется несравнимо более осуществимой задачей, чем восстановление естественного. Кроме того, это был бы значительно более щадящий и эффективный (в долгосрочной перспективе) метод терраформирования, чем термоядерная бомбардировка или развертывание орбитальных зеркал, предложенные Илоном Маском. Остается с интересом следить, возможна ли при в обозримом будущем практическая реализация подобных планов.
Планеты земной группы
Пояс астероидов внутри Солнечной системы поделил планеты на две большие группы. Первая из них — планеты земной группы, из названия следует, что эти планеты наиболее близко расположены к Земле. К этой группе отнесены Меркурий, Венера, Земля и Марс
Все эти планеты находятся под пристальным вниманием ученых — а в настоящее время доподлинно не известно, есть ли жизнь на других планетах, как на Земле.
Планеты объединяет не только строение, но и небольшие размеры, средняя плотность, медленное вращение вокруг осей, малое количество или полное отсутствие спутников.
Некоторые факты о планетах:
- Меркурий — самая маленькая планета Солнечной системы, максимально близко расположенная к Солнцу. Как и многие планеты системы, получила название в честь бога из римской мифологии. Поскольку на Меркурии нет воды, а в слоях планеты много металла, объект имеет серый цвет. Расстояние между Солнцем и Меркурием составляет в среднем 57.9 млн км. Путь вокруг Солнца планета проходит за 88 суток, это же время принято считать планетарным годом. Однако солнечные сутки здесь составляют 176 земных. Средняя дневная температура — 67 °C, колебания составляют в течение суток от -190 °C до +427 °C.
- Венера — желто-белая планета, у которой нет смены времен года в общем понимании, она вращается противоположно движению большинства планет, то есть по часовой стрелке. Получила название в честь богини римской мифологии. Это самая жаркая планета в системе: температура в течение года — 462 °C в среднем. Эта же планета самая «капризная»: грозы, молнии, ураганы, кислотные дожди идут и бушуют здесь постоянно. Год здесь составляет 224 суток относительно земного года. Но вращается вокруг своей оси Венера довольно медленно. День в земном исчислении здесь длится почти 8 месяцев.
- Земля — третья по расположению планета от Солнца, светло-голубого оттенка. Этот оттенок возможен благодаря атмосфере — газовой оболочке, высота которой достигает 550 километров. Многие задаются вопросом «почему Земля не названа в честь богов мифологии?». Как бы это ни звучало парадоксально, в прошлом никто и не представлял даже гипотетически, что Земля — тоже планета. Название получила она позже, когда науке стало очевидно, что Земля — тоже планета. И в русском, и в английском языках, как следует из названия, «имя планеты» обозначает землю, грунт, низ. Период вращения Земли вокруг оси составляет примерно 24 часа. Земля имеет свой космический спутник — Луну.
- Марс — красно-оранжевая планета, четвертая от Солнца, получившая название в честь бога войны древнеримской мифологии. Ее спутники — Фобос и Деймос. Пожалуй, самая изученная землянами планета, так как продолжительное время считалось, что жизнь на Марсе возможна. Последние выводы ученых говорят о том, что на настоящий момент здесь могут выжить только бактерии. Планета пронизана кратерами, вулканами и пустынями. Это единственная планета, где период вращения вокруг своей оси составляет 24 ч 37 мин — примерно за это же время Земля делает свой поворот. Здесь даже отчетливо различимы времена года — весна и лето длятся больше половины года, зимой температура на полюсе составляет около -153 °C, а летом на экваторе — +20 °C.
Общее строение у планет земной группы:
- Планеты имеют центральное ядро, состоящее из железа с некоторым количеством никеля.
- Силикат обнаруживается в мантии — слой, между ядром и корой.
- Кора есть у всех планет этой группы, однако Меркурий потерял кору из-за метеоритной бомбардировки.