Есть ли жизнь на марсе

Рассматриваемые методы колонизации Марса

За последние десятилетия возникало множество предложений о способах создания колоний на Марсе. В 1964 году Дандридж Коул выступал за активацию парникового эффекта – доставка аммиачных льдов на поверхность планеты. Это мощный парниковый газ, поэтому должен загустить атмосферу и повысить температуру Красной планеты.

Ученым удалось вывести скорость потери воды через измерение соотношения воды в сегодняшнем состоянии и моделями 4.3 млрд. лет назад

Еще один вариант – уменьшение альбедо, где марсианскую поверхность покроют темным материалом, чтобы сократить поглощение звездных лучей. Эту идею поддерживал Карл Саган. В 1973 году он даже предложил два сценария для этого: доставка низколегированного материала и посадку темных растений на полярных территориях, чтобы расплавить ледяные шапки.

В 1982 году Кристофер Маккей написал статью о концепции саморегулируемой марсианской биосферы. В 1984 году Д. Лавлок и М. Албаби предложили импортировать хлорфторуглероды, чтобы создать глобальное потепление.

Художественная интерпретация возможных растений, согревающих Красную планету

В 1993 году Роберт Зубрин и Кристофер Маккей предложили разместить орбитальные зеркала, которые бы увеличили нагрев. Если расположить их возле полюсов, то можно было бы расплавить ледяные запасы. Также они голосовали за использование астероидов, которые при ударах накаляют атмосферу.

В 2001 году поступила рекомендация о применении фтора, который в качестве парникового газа в 1000 раз эффективнее СО2. Причем эти материалы можно добывать на Красной планете, а значит можно обойтись без земных поставок. Нижний рисунок демонстрирует концентрацию метана на Марсе.

Исследователи НАСА отметили колебания метановой концентрации в атмосфере. Это говорит о том, что он все время пребывает и убывает

Также предлагали доставлять метан и прочие углеводороды из внешней системы. Их много на Титане. Есть идеи по созданию закрытых биодомов, где будут использовать кислородосодержащие цианобактерии и водоросли, посаженные в марсианскую почву. В 2014 году проводили первые испытания и ученые продолжают развивать концепцию. Такие конструкции способны создать определенные кислородные запасы.

Процесс «марсианского озеленения» включает импорт газов и земных организмов для планетарных трансформаций

На Марсе имеется четыре сезона

Время года на Марсе.

Как и на Земле, на Марсе имеются четыре сезона. Но в отличии от Земли, где каждый сезон условно разбит на три месяца, продолжительность каждого сезона на Марсе зависит от полушария планеты. Марсианский год длится 668,59 сола (марсианскими днями называют солы), что примерно равно 687 земным суткам и почти в два раза продолжительнее земного года. В северном полушарии Красной планеты весна длится семь земных месяцев, лето – шесть, осень – 5,3 земных месяца, а зима продолжается чуть больше четырех.

Марсианское лето в серверном полушарии очень холодное. Очень часто температура здесь в это время года не повышается выше -20 градусов Цельсия. На южном полушарии Марса чуть теплее – температура там может повышаться до +30 градусов Цельсия в тот же сезон. Такой температурный контраст нередко становится причиной сильнейших пылевых бурь.

Венера

Еще одной самой близкой к нам планетой (кроме Луны) является Венера. Это мир с чудовищными условиями и невероятно плотной атмосферой, заглянуть за которую долгое время никому не удавалось. Ее наличие, кстати, открыл не кто иной как Михаил Ломоносов.

Атмосфера является причиной парникового эффекта и ужасающей средней температуры на поверхности в 467 градусов по Цельсию! На планете постоянно выпадают осадки из серной кислоты и кипят озера жидкого олова. Такая вот негостеприимная планета Венера. Сила тяжести ее составляет 0,904 G от земной, что почти идентично.

Она также является кандидатом на терраформирование, а впервые ее поверхности достигла советская исследовательская станция 17 августа 1970 года.

Чем мы будем питаться?

Поверхность Марса не подходит для выращивания растений, поэтому будущим колонизаторам придется прибегнуть к инновационным способам добычи продуктов. Планируется, что первые люди привезут с Земли запас продовольствия на несколько лет вперед. Среди возможных продуктов — водоросли и насекомые, поскольку они быстро размножаются и для их возобновления не нужна почва.

В дальнейшем производство продуктов питание переместится в специально оборудованные помещения с искусственным светом. Питательные вещества для растений будут получать из отходов, либо приводить с Земли. Людей, прилетающих на Марс, обучат работе с тепличным оборудованием Марса, и каждый желающий сможет построить свой персональный огород.

Среди других возможных вариантов — 3D-печать пищевых продуктов. На Марс будет сложно завести животных, и колонизаторы рискуют остаться без мясных продуктов. Потенциальное создание искусственного мяса поможет решить эту проблему и одновременно обеспечить более гуманный способ производства продукта.

Можно ли выжить на Марсе?

Для того, чтобы попасть на Марс, человеку необходимо преодолеть десятки и сотни миллионов километров космического пространства. Из-за того, что человечество пока еще не располагает достаточным уровнем технологий, необходимых для совершения длительных межпланетных путешествий, полет к Марсу будет представлять собой довольно скучное и однообразное мероприятие, способное свести с ума даже самого стойкого и подготовленного астронавта. Кроме того, по прибытию на Марс, астронавты должны будут научиться противостоять суровым условиям Красной планеты, которых в этом мире, сплошь покрытом ржавчиной, немалое количество.

Красный реголит, покрывающий поверхность Марса, практически полностью состоит из оксида железа и кремнезема

Согласно данным, полученным в результате многолетних наблюдений за Марсом, основными проблемами, которые могут представлять угрозу для здоровья и жизни астронавтов, будут являться малая сила тяжести на планете, высокий уровень радиации на поверхности, сочетающиеся с практически полным отсутствием атмосферы и кислорода, а также весьма низкие температуры, по своим показателям превосходящие даже антарктические. Кроме того, мощные пылевые бури, порой охватывающие целые полушария Марса, будут значительно замедлять прогресс колонизации Красной планеты

Так, для того, чтобы выжить и спасти жизненно важное оборудование первых поселенцев, нам придется научиться прогнозировать возникновение бурь, строить укрытия и искать способы защиты электронной аппаратуры, потеря которой может привести к исчезновению всей марсианской колонии

Мощная пылевая буря на Марсе

В том случае, если идея о создании земной колонии на Марсе однажды все-таки осуществится, выйти за пределы аванпоста без скафандра будет невозможно по ряду причин. Из-за того, что тонкая марсианская атмосфера состоит на 95% из углекислого газа, участь человека на Красной планете без какой-либо внешней защиты будет решена буквально за пару минут. Кроме того, низкое давление на поверхности Марса, которое составляет всего 0,6% от земного, заставит жидкость в теле человека буквально вскипеть, чем спровоцирует сильное набухание всех тканей организма и разрыв его кровеносных сосудов.

В теории, жизнь на Марсе вполне возможна при условии соблюдения будущими колонистами некоторых правил, которые могли бы поддерживать жизнеспособность как целого аванпоста, так и отдельного астронавта. Однако огромное количество малоприятных нюансов, с которыми будет напрямую связано существование человека в чуждом ему мире, может поставить под угрозу даже самую хорошо спланированную миссию по покорению Красной планеты.

Поверхностные особенности

Площадь поверхности Марса составляет 144 млн. , что представляет лишь 28,3% от площади нашей планеты. Общая площадь Марса практически приравнивается в площади суши на Земле. В 2012 году на поверхность Марса  высадился марсоход «Curiosity», который в течение пяти лет позволил добыть NASA массу новых сведений о нашем космическом соседе. Благодаря аппарату мы узнали, что основные различия Марса и Земли кроются как раз-таки на поверхности.

Мы часто слышали, что Землю называют Голубым шаром. Такое прозвище пошло из-за того, что над дом на 71% покрыта водой: океанами, морями, озерами и реками. Остальные 29% занимает суша. Марс же в свою очередь называют Красной планетой.

Красному цвету Марс обязан толстому слою пыли и ржавчины, который покрывает собой в том числе и замерзшие миллиарды лет назад океаны. Наличие ржавчины также говорит о том, что раньше на поверхности присутствовала вода в жидком состоянии в высоком процентном соотношении с сушей. Для реакции также был необходим высокий процент кислорода в атмосфере. Следовательно, миллиарды лет назад космический объект был пригоден для развитой жизни. Сейчас поверхность Марса похожа на пустыню, где признаки присутствия даже одноклеточной жизни отсутствуют.

Ученые условно разделяют всю поверхность на две неравные между собой половины: материки и моря. Более светлые участки называют материками, а темные, которые составляют 1\3 всей площади – морями. Вот только не стоит предполагать, что ранее в этих областях были настоящие моря и океаны. Долгие годы велись споры, почему же эти темные пятна остаются таковыми даже после многочисленных бурь. Один из вариантов – с этих участков просто выдувается пыль, и черная вулканическая порода всегда остается открытой.

Одна из ключевых особенностей поверхности является необычный рельеф на Южном и Северном полушарии. Южная часть просто усеяна вулканами и различными неровностями, тогда как северная – относительно ровная.

Итак, что общего у Земли и Марса? Убедимся, что у поверхностей этих двух планет есть общее. Если сравнить ландшафты, то в обоих случаях мы увидим:

  • горы;
  • плато;
  • равнины;
  • каньоны;
  • долины и так далее.

Именно на Марсе находится самая высокая гора-вулкан во всей Солнечной системе – мы назвали ее Олимпом. Только представьте себе, высота Олимпа составляет невероятных 27 километров. Это практически в 4 раза больше, нежели самая высокая точка на нашей планете – гора Эверест. Свое название вулкан получил в честь вымышленной горы из древнегреческих мифов, на которой жили боги. Кроме того, на Красной планете расположена Долина Маринер, которая представляет собой гигантскую систему каньонов, достигает в глубину 10 км, что позволяет ей почти сравниться с нашей земной Марианской впадиной (почти 11 км).

Что еще общего? Обе планеты пострадали от многочисленных падений метеоритов и астероидов, которые изменили внешний облик поверхности. В случае Земли, численные кратеры сокрыты слоем воды. Тогда как там они прослеживаются гораздо лучше.

Как и на полюсах Земли, на Марсе также имеются ледяные шапки. В отличие от земных, шапки Красной планеты состоят из так называемого сухого льда, в котором огромная доля углекислого газа. Шапки Марса существенно меняются с переменой сезонов. К примеру, в самое холодное время они могут достигать толщины в более чем 3 км, тогда как в самой теплое их толщина едва ли достигает нескольких метров.

Отдельного внимания заслуживает разговор о схожести грунтов. На поверхности полно обширных регионов, в которых показатель pH в грунте схож с Земным. Напомним, что pH – это водородный показатель. Так вот, во многих регионах водорода вполне достаточно для выращивания растений и сейчас, и в будущем. По мнениям ботаников, отлично будет себя чувствовать в условиях марсианской почвы спаржа.

Гравитационное поле, изменяющееся во времени

На Марсе происходит цикл сублимации-конденсации, в результате которого происходит обмен углекислым газом между криосферой и атмосферой. В свою очередь, между двумя сферами происходит обмен массой, что дает сезонные колебания силы тяжести. (С любезного разрешения NASA / JPL-Caltech)

Сезонная смена гравитационного поля на полюсах

Сублимации — конденсации цикл углекислого газа на Марсе между атмосферой и криосферы (полярная шапка) работает сезонно. Этот цикл является почти единственной переменной, учитывающей изменения гравитационного поля на Марсе. Измеренный гравитационный потенциал Марса с орбитальных аппаратов можно обобщить следующим образом:

V(Mарs)знак равноV(Sоляdплапет)+V(Sеаsопалcапs+Атмоsпчасере){\ displaystyle V (Марс) = V ({Solid \, planet}) + V (Seasonal \, caps + Atmosphere)}

В свою очередь, когда в сезонных шапках больше массы из-за большей конденсации углекислого газа из атмосферы, масса атмосферы будет уменьшаться. У них обратные отношения друг с другом. И изменение массы оказывает прямое влияние на измеренный гравитационный потенциал.

Сезонный массообмен между северной полярной шапкой и южной полярной шапкой демонстрирует длинноволновые изменения силы тяжести со временем. Долгие годы непрерывных наблюдений показали, что определение четного зонального нормированного коэффициента силы тяжести C l = 2, m = 0 и нечетного зонального нормированного коэффициента силы тяжести C l = 3, m = 0 имеет решающее значение для описания изменяющейся во времени силы тяжести. за счет такого массообмена, где — градус, а — порядок. Чаще они представлены в виде C lm в исследовательских статьях.
л{\ displaystyle l}м{\ displaystyle m}

Если мы рассматриваем два полюса как две различные точечные массы, то их массы определяются как

MNпзнак равноC20+C302MMарs{\ Displaystyle M_ {NP} = {\ frac {C_ {20} + C_ {30}} {2}} \, M_ {Марс}}

MSпзнак равноC20-C302MMарs{\ displaystyle M_ {SP} = {\ frac {C_ {20} -C_ {30}} {2}} \, M_ {Mars}}

Данные показали, что максимальная вариация массы южной полярной шапки составляет приблизительно 8,4 x 10 15 кг, происходящая в период осеннего равноденствия , в то время как для северной полярной шапки приблизительно 6,2 x 10 15 кг, происходящая между зимним солнцестоянием и весной. равноденствие .

В долгосрочной перспективе было обнаружено, что масса льда, хранящегося на Северном полюсе, увеличится на (1,4 ± 0,5) x 10 11 кг, в то время как на Южном полюсе она уменьшится на (0,8 ± 0,6) x 10 11 кг. Кроме того, в долгосрочной перспективе масса углекислого газа в атмосфере уменьшится на (0,6 ± 0,6) x 10 11 кг. Из-за наличия неопределенностей неясно, продолжается ли миграция материала с Южного полюса на Северный, хотя такую ​​возможность нельзя исключать.

Искусственный магнитный щит Марса: технические характеристики

Марсианская точка Лагранжа расположена на расстоянии около 1 миллиона километров от Марса. С поправкой на компенсацию сильных солнечных вспышек можно предположить, что будет достаточно расширить искусственное магнитное поле на расстояние 1,5 млн километров от планеты.

Также следует учитывать, что интенсивность солнечного ветра на марсианской орбите значительно ниже, чем на расстоянии одной астрономической единицы от Солнца (т.е. на расстоянии от Солнца до Земли). Таким образом, для защиты Марса от солнечного ветра достаточно получить магнитное поле примерно вдвое слабее, чем понадобилось бы для защиты Земли. Учитывая оба этих фактора, понадобится сгенерировать вокруг Марса магнитное поле всего в 11% от силы естественного магнитного поля Земли, и минимальный радиус магнитослоя вокруг Марса составил бы всего 500 000 километров.

Согласно уравнению величины магнитного поля, можно высчитать силу тока «провода», необходимого для генерации такого магнитного поля. Получается ток силой около 200 мега-ампер.

Соответственно, это будет провод колоссального размера. Чтобы сделать его как можно компактнее, необходимо как можно сильнее уменьшить рабочее напряжение этого провода и, следовательно, его сопротивление. Чтобы добиться минимального сопротивления, нужно подобрать минимальную длину провода, при этом обеспечив для него максимальную площадь поперечного сечения. Отметим, что сопротивление проводника можно было бы снизить, изготовив его из сверхпроводящего материала, но технически наиболее доступной конфигурацией представляется плоская медная катушка, намотанная настолько плотно, что отверстие в ее центре будет как можно уже. При этом отверстие в центре катушки необходимо оставить, так как при его отсутствии в катушке возникнут контрпродуктивные обратные токи, и ее сопротивление будет чрезмерно сильным.

Остается вопрос о том, какой источник энергии позволил бы запитать подобную конструкцию на орбите Марса. Для этого определенно не подойдут солнечные панели, так как солнечное излучение на орбите Марса довольно слабое, и даже сконструировав солнечные панели площадью 4000 м2 и обладающие КПД 20%, нам потребовалось бы для производства проводника больше меди, чем в принципе имеется на Земле. Более эффективным энергетическим решением был бы 830-мегаваттный ядерный реактор, работающий на орбите Марса и запитывающий магнитный контур. В таком случае напряжение в системе составило бы всего 2 вольт, а размеры медной катушки – 3,5 метров в диаметре при весе около 57 тонн. По расчетам автора, такая катушка позволила бы генерировать магнитное поле около 81 тесла. При этом необходимо было бы решить дополнительные технические проблемы, связанные с отводом избыточной теплоты от контура во избежание его деформации, а также обеспечить доставку 40 тонн урана в марсианскую точку Лагранжа каждые два года (следует оговориться, что мы пока не можем оценить запасы урана на Марсе, поэтому последняя проблема может решаться проще, чем кажется на первый взгляд).

Дальнейшие выкладки из упомянутой статьи выходят за рамки данной публикации, но ее все-таки будет интересно прочесть целиком – в частности, чтобы познакомиться с ориентировочными характеристиками космического корабля, необходимого для реализации всего проекта.

Итак, генерация искусственного магнитного поля для Марса представляется несравнимо более осуществимой задачей, чем восстановление естественного. Кроме того, это был бы значительно более щадящий и эффективный (в долгосрочной перспективе) метод терраформирования, чем термоядерная бомбардировка или развертывание орбитальных зеркал, предложенные Илоном Маском. Остается с интересом следить, возможна ли при в обозримом будущем практическая реализация подобных планов.

Почему Марс потерял магнитное поле

Из версий о причинах утраты магнитосферы наиболее убедительной считается гипотеза профессора Джафара Аркани-Хамеда из университета в Торонто. Проведя компьютерное моделирование, он доказал высокую вероятность того, что катастрофа связана со взаимодействием планет солнечной системы, в частности с влиянием Юпитера на пояс астероидов.

Под влиянием этого газового гиганта достаточно массивное тело, сопоставимое по размерам с малой планетой, было вытолкнуто со своей орбиты и, захваченное Марсом, сделалось его спутником с постоянно уменьшающимся радиусом обращения.

При снижении спутника до 50-75 тыс. км возникла конвекционная нестабильность марсианского ядра, что привело его в движение, создав эффект динамо. Возникло общепланетное магнитное поле, которое могло просуществовать до 400 млн лет, надежно прикрывая планету.

Однако сила притяжения Марса продолжала действовать на астероид, заставляя его снижаться до тех пор, пока на пределе Роша (2,44 радиуса планеты) он не разрушился и обломки его не рухнули на поверхность.

Две стороны планеты Марс. Credit: Rock-cafe

Марс получил из космоса удар такой силы, что деформировалась твердая кора планеты.

Астрономы находят этому подтверждение в наличии гигантского кратера в области Эллада (южное полушарие) и антиподной ей группе вулканов во главе с крупнейшей в солнечной системе горой Олимп (северное), поднимающейся над окружающей равниной на 26 км.

Утрата спутника повлекла за собой остановку вращения ядра и исчезновение планетарного поля. Остаточные магнитные явления неравномерно распределились по поверхности Марса и связаны, скорее всего, с особенностями геологических пород.

Орбита и вращение Марса

У каждой планеты Солнечной системы есть определенный орбитальный период (определяющий продолжительность года) и период вращения (определяющий продолжительность суток). Давайте посмотрим, с какой скоростью Марс движется вокруг Солнца и вращается вокруг своей оси.

Сколько длится год на Марсе?

Так как Марс находится дальше от Солнца, чем Земля, Красной планете требуется больше времени, чтобы совершить один оборот вокруг Солнца. Год на Марсе длится примерно 687 земных дней или 1,88 земного года.

Сколько длится день на Марсе?

Марс вращается вокруг своей оси примерно с той же скоростью, что и Земля. Из-за этого продолжительность суток на этих двух планетах почти одинаковая. Один марсианский день (называемый “сол”) длится 24 часа 39 минут, что всего на 39 минут дольше земных суток.

Есть ли времена года на Марсе?

Как вы, вероятно, знаете, смена времен года на планете происходит из-за наклона оси ее вращения. Наклон оси вращения Марса весьма схож с земным: Красная планета наклонена под углом 25,2°, а Земля – под углом 23,5°. По этой причине на Марсе есть четыре времени года: весна, лето, осень и зима. Однако каждый сезон на Марсе длится примерно в два раза дольше, чем на Земле. Так происходит из-за того, что Марсу требуется почти два земных года, чтобы совершить один оборот вокруг Солнца.

Из истории исследования Марса

Первые наблюдения планеты проводились еще до изобретения телескопа. Существование Марса было зафиксировано в 1534 году до нашей эры древнеегипетскими астрономами. Они же рассчитали траекторию движения планеты. В вавилонской теории положение Марса на ночном небе было уточнено, были впервые получены временные измерения планетарного движения.

Карту поверхности Марса первым составил голландский астроном Х. Гюйгенс. Несколько рисунков, на которых было отображены темные области, он сделал в 1659 году. Существование ледяной шапки на полюсах предположил итальянский астроном Дж. Кассини в 1666 году. Он же вычислил период вращения планеты вокруг своей оси — 24 часа 40 минут. Он правильного значения этот результат отличается менее чем на три минуты.

С шестидесятых годов прошлого столетия к Марсу были направлены несколько АМС. С помощью орбитальных и наземных телескопов продолжалось дистанционное зондирование планеты с Земли для определения состава поверхности, исследования состава атмосферы и измерения скорости света.

Магнитное поле Марса, которое в пятьсот раз слабее земного, было зафиксировано станциями «Марс-2» и «Марс-3» в советское время. Космические аппараты «Марс-2» и «3» были запущены в 1971 году. Главная техническая задача не была решена, но научные исследования все равно оказались передовыми для своего времени.

Американцы запускали к Марсу «Маринер-4» в 1964 году. Космический аппарат сделал снимки поверхности и исследовал состав атмосферы. Первым искусственным спутником планеты стал «Маринер-9», запущенный в 1971 году. Поиск жизни в пробах грунта проводился в 1975 году двумя идентичными космическими аппаратами в рамках программы «Викинг». В дальнейшем для систематического исследования планеты использовались возможности телескопа «Хаббл».

Предстоящие события

7 октября: Соединение Марса с Солнцем

7 октября, в 06:35 по московскому времени (03:35 GMT), Марс будет находиться рядом с Солнцем на небе. Минимальное расстояние между двумя объектами составит 0°39′. Из-за такой близости к Солнцу планету нельзя будет наблюдать в течение нескольких недель. Если бы Марс можно было увидеть, он выглядел бы очень тусклым и маленьким. Все потому, что в момент соединения с Солнцем Марс достигает самой удаленной от Земли точки своей орбиты.

2 декабря: Соединение Луны и Марса

2 декабря 2021 года, в 03:27 по московскому времени (00:27 GMT), Марс будет проходить рядом с Луной. Расстояние между двумя объектами в момент соединения составит 0°41′. Луна будет сиять со звездной величиной -8,9, а Марс – со звездной величиной 1,6. Оба объекта будут находиться в созвездии Весов. Соединение Луны и Марса можно будет наблюдать невооруженным глазом или с помощью бинокля.

31 декабря: Покрытие Луной Марса

31 декабря 2021 года, в 22:52 по московскому времени (19:52 GMT), Луна пройдет перед Красной планетой и скроет ее от глаз наблюдателей. Покрытие Луной Марса можно будет наблюдать с помощью бинокля. К сожалению, увидеть это астрономическое событие смогут только жители Австралии.

Земная гравитация

В нашем случае она формируется из массы и плотности – 5.9237 х 1024 кг и 5.514 г/см3. Получается, что гравитация Земли равна 9.8 м/с2. Однако эта отметка способна меняться в зависимости от вашего расположения на поверхности. На экваториальной линии – 9.789 м/с2, а на полюсах – 9.832 м/с2.

Международная космическая станция на земной орбите

Также гравитация меняется, основываясь составе небесного тела. Более высокие концентрации материала способны изменить силу. Но эта сумма слишком крошечная, чтобы ее отметить. Вы могли знать, что гравитация иная на большой высоте. Если вы окажитесь на вершине Эвереста, то там сила на 0.28% меньше. На МКС – 90% поверхностной. Но станция пребывает в эффекте свободного падения, поэтому все внутри падает, и вы не ощущаете силы.

Именно гравитация ответственна за то, что скорость побега составляет 11.186 км/ч. Из-за разности в гравитационных показателях с другими объектами приходится готовить астронавтов к сложным условиям и создавать специальные тренажеры и защиту.

Длительное пребывание в микрогравитации негативно сказывается на организме, но НАСА стараются исправить это положение, чтобы без проблем построить марсианские и лунные колонии.

Мы должны быть благодарны за гравитацию Земли, но это и наша ноша, усложняющая процесс освоения чужих миров. Мы прикованы к дому и чувствуем себя здесь прекрасно, но вынуждены ограничивать себя лишь этим шаром.

  • Интересные факты о планете Земля;
  • Как погибнет Земля;
  • Как закончится жизнь на Земле?
  • Как Земля защищает нас от космоса?
  • Самая похожая на  Землю планета
  • Как появилась вода на Земле?
  • Кто открыл Землю?
  • Разрушение Земли
  • Смогут ли люди передвинуть Землю?
  • Как сформировалась Земля

Строение Земли

  • Сколько спутников у Земли;
  • Земля круглая?
  • Почему Земля круглая?
  • Есть ли у Земли кольца?
  • Насколько большая Земля?
  • Возраст Земли;
  • Масса Земли;
  • Земная гравитация
  • Сколько весит Земля?
  • Сколько весит Земля? Сравнение;
  • Размер Земли
  • Диаметр Земли;
  • Окружность Земли
  • Плотность Земли
  • Магнитное поле Земли;
  • Геомагнитный разворот

Поверхность Земли

  • Поверхность Земли;
  • Что такое поверхностная земная зона?
  • Терминатор Земли
  • Сколько километров займет путь вокруг Земли?
  • Эффект Альбедо
  • Альбедо Земли
  • Гравитация Земли;
  • Температура на Земле;

Положение и движение Земли

  • Земля, Солнце и Луна;
  • Что приводит к смене дня и ночи?
  • Циклы Миланковича
  • Солнечный день
  • Как долго солнечный свет добирается к Земле?
  • Вращение Земли вокруг Солнца;
  • Что такое земное вращение?
  • Почему Земля вращается?
  • Что произойдет, если Земля перестанет вращаться?
  • Почему Земля наклонена?
  • Северный магнитный полюс
  • Орбита Земли;
  • Прецессии равноденствий
  • Расстояние от Земли до Солнца;
  • Ближайшая к Земле звезда;
  • Ближайшая к Земле планета;
  • Сколько длится день на Земле;
  • Зимнее солнцестояние
  • Сколько длится земной год;
  • Скорость вращения Земли;
  • Ось вращения Земли;
  • Наклон Земли;

Новый вид?

Шесть тысяч лет — это малый срок, чтобы человек изменился до неузнаваемости. Современные Homo Sapiens существуют как отдельный вид, по разным оценкам, 160 000 — 45 000 лет. И некоторые ученые сомневаются в словах Соломона.

Биологи Филипп Миттерекер из Венского университета в Австрии, говорит:

Чтобы на Марсе произошли любые эволюционные изменения:

  1. должен работать естественный отбор;
  2. местная среда обитания должна отличаться от земной. Если на Красной планете создать полностью земные условия: усилить гравитацию, поставить искусственное освещение, производить такую же еду, как на Земле, люди меняться не будут;
  3. отличия в условиях не должны быть чересчур сильными, чтобы популяция не погибла в первые же недели, говорит в своей лекции антрополог Станислав Дробышевский.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector