Видимое движение планет на небесной сфере
Содержание:
- Линейная и угловая скорость вращения
- Вселенная крутится, как юла. Астрономы обнаружили следы вращения мироздания.
- Экзопланеты
- Формирование и эволюция Солнечной системы
- Почему Солнечная система не распадается
- Обнаружение Солнечной системы
- Образование Солнца
- Еще дальше
- Наблюдение движения внутренних планет Солнечной системы
- Ретроградные планеты в 2021 году
- Образование Солнца
- Солнце
- Самая большая и самая маленькая планета солнечной системы
- Форма, размер и рельеф Земли
- Как появилась Солнечная система, и как она развивалась
- Солнечная система: строение и структура
- Размер, масса и орбита
Линейная и угловая скорость вращения
(Вращение Земли
)
Линейная скорость вращения Земли вокруг оси — 465 м/с или 1674 км/час в зоне экватора, по мере отдаления от него скорость постепенно замедляется, на Северном и Южном полюсах она равна нулю. Например, для граждан экваториального города Кито (столица Эквадора в Южной Америке) скорость вращения как раз 465 м/с, а для москвичей, живущих на 55-ой параллели к северу от экватора, — 260 м/с (почти в два раза меньше).
Ежегодно скорость вращения вокруг оси снижается на 4 миллисекунды, что связано с влиянием Луны на силу морских и океанических отливов и приливов. Притяжение Луны «тянет» воду в направлении, противоположном к осевому вращению Земли, образуя незначительную силу трения, замедляющую скорость вращения на 4 миллисекунды. Скорость углового вращения остается везде одинаковой, её значение — 15 градусов в час.
Вселенная крутится, как юла. Астрономы обнаружили следы вращения мироздания.
До сих пор большинство исследователей склонялось к мнению, что наше мироздание статично. Или если и движется, то чуть-чуть. Каково же было удивление команды ученых из Мичиганского университета (США) во главе с профессором Майклом Лонго, когда они обнаружили в космосе явные следы вращения нашего мироздания. Выходит, с самого начала, еще при Большом взрыве, когда только рождалась Вселенная, она уже вращалась. Как будто кто-то запустил ее, как юлу. И она до сих пор крутится-вертится.
Исследования велись в рамках международного проекта «Цифровой обзор неба Слоана» (Sloan Digital Sky Survey). И этот феномен ученые обнаружили, каталогизировав направление вращения около 16 000 спиральных галактик со стороны северного полюса Млечного Пути. Вначале ученые пытались найти доказательства того, что Вселенная обладает свойствами зеркальной симметрии. В таком случае, рассуждали они, количество галактик, которые вращаются по часовой стрелке, и тех, что «закручены» в противоположном направлении, было бы одинаковым, сообщает pravda.ru.
Но оказалось, что по направлению к северному полюсу Млечного пути среди спиральных галактик преобладает вращение против часовой стрелки, то есть они ориентированы в правую сторону. Эта тенденция просматривается даже на расстоянии более 600 миллионов световых лет.
— Нарушение симметрии небольшое, всего около семи процентов, но вероятность того, что это такая космическая случайность — где-то около одной миллионной, — прокомментировал профессор Лонго. — Полученные нами результаты очень важны, поскольку они, похоже, противоречат практически всеобщему представлению о том, что если взять достаточно большой масштаб, то Вселенная будет изотропной, то есть не будет иметь выраженного направления.
По словам специалистов, симметричная и изотропная Вселенная должна была возникнуть из сферически симметричного взрыва, который по форме должен был напоминать баскетбольный мяч. Однако, если бы при рождении Вселенная вращалась вокруг своей оси в определенном направлении, то галактики сохранили бы это направление вращения. Но, раз они вращаются в разных направлениях, следовательно, и Большой взрыв имел разностороннюю направленность. Тем не менее, скорее всего, Вселенная до сих пор продолжает вращаться.
В общем-то, астрофизики и раньше догадывались о нарушении симметрии и изотропности. Их догадки были основаны на наблюдениях других гигантских аномалий. К ним относятся следы космических струн — невероятно протяженные дефекты пространства-времени нулевой толщины, гипотетически родившиеся в первые мгновения после Большого взрыва. Появлении «синяков» на теле Вселенной — так называемых отпечатков от прошлых ее столкновений с другими вселенными. А также движение «Темного потока» — огромных размеров поток галактических кластеров, несущихся на огромной скорости в одном направлении.
Экзопланеты
Звезды и планетные системы, как правило, рождаются в звездных скоплениях, а не образуются изолированно. Протопланетные диски могут сталкиваться с молекулярными облаками внутри скопления или красть материал из них, и это может привести к тому, что диски и их результирующие планеты будут иметь наклонные или ретроградные орбиты вокруг своих звезд. Ретроградное движение также может быть результатом гравитационного взаимодействия с другими небесными телами в той же системе (см. Механизм Козаи ) или близкого столкновения с другой планетой, или может случиться так, что сама звезда перевернулась на ранней стадии формирования их системы из-за взаимодействий между ними. магнитное поле звезды и диск, образующий планету.
В аккреционном диске протозвезды IRAS 16293-2422 есть части, вращающиеся в противоположных направлениях. Это первый известный пример встречного вращения аккреционного диска. Если эта система образует планеты, внутренние планеты, вероятно, будут вращаться в направлении, противоположном направлению внешних планет.
WASP-17b была первой экзопланетой, которая, как было обнаружено, вращается вокруг своей звезды, противоположной направлению вращения звезды. Днем позже было объявлено о второй такой планете: HAT-P-7b .
В одном исследовании более половины всех известных горячих юпитеров имели орбиты, которые были смещены с осью вращения их родительских звезд, а у шести орбиты были обратными.
Последние несколько гигантских ударов во время как правило, являются основным фактором, определяющим скорость вращения планет земной группы . Во время стадии гигантского столкновения толщина протопланетного диска намного больше, чем размер планетарных зародышей, поэтому столкновения с равной вероятностью произойдут с любого направления в трех измерениях. Это приводит к наклону оси аккрецированных планет в диапазоне от 0 до 180 градусов с любым направлением так же вероятно, как и любое другое с равной вероятностью как прямого, так и ретроградного вращения. Поэтому прямое вращение с небольшим наклоном оси, обычное для планет земной группы Солнечной системы, за исключением Венеры, не характерно для планет земной группы в целом.
Формирование и эволюция Солнечной системы
Солнечная система образовалась около 4,57 млрд лет назад путем гравитационного сжатия газопылевого облака. Считается, что это облако имело размер в несколько световых лет и выступало прародителем для нескольких звезд.
В процессе сжатия облака скорость его вращения росла. Центр становился более горячим, чем окружающий его диск. В результате в центральной части образовалась плотная горячая протозвезда — звезда, находящаяся на заключительном этапе формирования и начальной стадии эволюции.
Она была окружена протопланетными дисками, впоследствии прирастившими массу путем гравитационного притяжения материи из окружающего пространства и превратившимися в планеты.
В течение 50 млн лет скорость, температура, плотность и давление нарастали. В результате было достигнуто гидростатическое равновесие между гравитационной силой и противостоящей ей тепловой энергией. Солнце сформировалось в полноценную звезду главной последовательности.
Почему Солнечная система не распадается
Космическое пространство не является пустотой. Все пространство вокруг звезд и планет наполнено космической пылью или темной материей, которая окружает все галактики. Большие скопления космической пыли называют облаками и туманностями. Часто облака космической пыли окружают крупные объекты – звезды и планеты.
Солнечная система окружена такими облаками. Они создают эффект упругого тела, что придает ей больше прочности. Другим фактором, не дающим распасться Солнечной системе, является сильное гравитационное взаимодействие между Солнцем и планетами, а также большое расстояние до ближайших к нему звезд. Так, самая близкая к Солнцу звезда Сириус находится на расстоянии около 10 млн световых лет. Чтобы было понятно, насколько это далеко, достаточно сравнить расстояние от светила до планет, входящих в состав Солнечной системы. Например, расстояние от него до Земли составляет 8,6 световых минут. Поэтому взаимодействие Солнца и других объектов внутри Солнечной системы значительно сильнее, чем других звезд.
Обнаружение Солнечной системы
Фактические нужно посмотреть в небо, и вы увидите нашу систему. Но немногие народы и культуры понимали, где именно мы существуем и какое место занимаем в пространстве. Долгое время мы думали, что наша планета статична, расположена в центре, а остальные объекты выполняют обороты вокруг нее.
Но все же еще в древние времена появлялись сторонники гелиоцентризма, чьи идеи вдохновят Николая Коперника на создание истинной модели, где в центре располагалось Солнце.
Галилей часто использовал свой телескоп, чтобы показать людям небесные объекты
В 17-м веке Галилей, Кеплер и Ньютон сумели доказать, что планета Земля вращается вокруг звезды Солнце. Обнаружение гравитации помогло понять, что и другие планеты следуют по единым законам физики.
Революционный момент настал с появлением первого телескопа от Галилео Галилея. В 1610-м году он заметил Юпитер и его спутники. За этим последуют обнаружения остальных планет.
В 19-м веке провели три важных наблюдения, которые помогли вычислить истинную природу системы и ее позицию в пространстве. В 1839 году Фридрих Бессель удачно определил кажущийся сдвиг в звездной позиции. Это показало, что между Солнцем и звездами лежит огромная дистанция.
В 1859 году Г. Кирхгоф и Р. Бунсен использовали телескоп для проведения спектрального анализа Солнца. Оказалось, что оно состоит из тех же элементов, что и Земля. Эффект параллакса просматривается на нижнем рисунке.
Параллакс помогает наблюдать за объектом на противоположных концах земной орбиты, чтобы вычислить точную удаленность
В итоге, Анджело Секки сумел сопоставить спектральную подпись Солнца со спектрами других звезд. Выяснилось, что они практически сходятся. Персиваль Лоуэлл внимательно изучал отдаленные уголки и орбитальные пути планет. Он догадался, что есть еще нераскрытый объект – Планета Х. В 1930-м году в его обсерватории Клайд Томбо замечает Плутон.
В 1992 году ученые расширяют границы системы, обнаружив транс-нептунианский объект – 1992 QB1. С этого момента начинается заинтересованность поясом Койпера. Далее следуют нахождения Эриды и прочих объектов от команды Майкла Брауна. Все это приведет к собранию МАС и смещению Плутона со статуса планеты. Ниже вы сможете детально изучить состав Солнечной системы, рассмотрев все солнечные планеты по порядку, главную звезду Солнце, пояс астероидов между Марсом и Юпитером, пояс Койпера и Облако Оорта. В Солнечной системе также скрывается самая большая планета (Юпитер) и самая маленькая (Меркурий).
Образование Солнца
Причиной преобразований газопылевого облака стал мощный вброс энергии. Ученые предполагают, что это была ударная волна от взрыва сверхновой звезды. Под ее воздействием произошло мгновенное сжатие массы, образование в центре облака плотного раскаленного ядра. Остальная масса рассредоточилась по периферии, сформировав огромный диск.
С течением времени ядро увеличивало температуру, давление и плотность. И на следующем этапе превратилось в протозвезду. Далее при достижении критических значений температуры и давления в ядре начали происходить термоядерные реакции: водород стал превращаться в гелий. Так протозвезда прекратила свое существование, уступив место звезде, которую люди на Земле назвали Солнцем.
Еще дальше
Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной — произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:
Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.
Наблюдение движения внутренних планет Солнечной системы
Видимое с Земли движение внутренних планет солнечной системы
Период обращения внутренней планеты вокруг Солнца меньше периода вращения Земли- Поэтому она в движении по своей орбите будет опережать Землю и последовательно проходить через точки 1, 2, 3 и 4. Когда планета проходит между Землей и Солнцем и находится в точке 1, она земному наблюдателю не видна, так как в это время к Земле обращена неосвещенная сторона планеты. Спустя некоторое время после прохождения точки 1, планета становится видимой и наблюдателю будет казаться, что она относительно Солнца отклоняется вправо.
Когда планета достигнет точки 2, наблюдатель увидит ее на небесной сфере в точке А. Затем в своем видимом движении планета совершает среди звезд петлю и начинает двигаться в обратном направлении. Удаление ее от Солнца уменьшается, она постепенно скрывается в его лучах и заходит одновременно с ним. В это время планета проходит за Солнцем. Через некоторое время планета становится снова видимой, но теперь уже слева от Солнца. Достигнув предельного отклонения от Солнца влево, планета в точке В снова делает петлю, меняет направление своего движения и затем начинает приближаться к Солнцу.
Таким образом, видимое движение внутренней планеты представляется как бы колебанием ее около Солнца.
При положении планеты справа от Солнца она наблюдается на небесной сфере как утренняя звезда, а при положении слева — как вечерняя звезда.
Наиболее благоприятными условиями наблюдения внутренних планет являются условия, при которых они находятся вбизи точек наибольшего углового отклонения от Солнца.
У Меркурия максимальное угловое отклонение достигает 28°, а у Венеры — 48°. Поскольку Меркурий находится близко к Солнцу, то наблюдать его трудно. Даже при максимальном угловом отклонении от Солнца его можно наблюдать только в сумерках вскоре после захода Солнца или непосредственно перед восходом Солнца. Венера при наибольшем угловом отклонении восходит примерно за 3—4 ч до восхода Солнца, а при вечерней видимости через столько же времени заходит после захода Солнца.
Ретроградные планеты в 2021 году
С 25 июня по 1 декабря внешняя планета Нептун будет двигаться по небу в “обратном” направлении. На протяжении всего этого периода планета будет находиться в созвездии Рыб. Периоды ретроградности Нептуна происходят раз в год и длятся около пяти месяцев.
Если вы хотите отследить путь любой планеты в небе во время периода ретроградности, используйте приложение для наблюдения звездного неба Star Walk 2. Нажмите на иконку лупы в левом нижнем углу экрана, введите название планеты в поле поиска и выберите соответствующий результат в поисковой выдаче. Вы увидите точное расположение планеты в небе над вами. Вы также можете увидеть, где будет находиться планета в любой выбранный вами день и в любое время суток – для этого воспользуйтесь функцией “Машина времени”.
В 2021 году у вас также будет возможность наблюдать попятное движение других планет. Уран начнет двигаться ретроградно с 19 августа, Меркурий – с 27 сентября, а Венера – с 19 декабря.
Образование Солнца
Причиной преобразований газопылевого облака стал мощный вброс энергии. Ученые предполагают, что это была ударная волна от взрыва сверхновой звезды. Под ее воздействием произошло мгновенное сжатие массы, образование в центре облака плотного раскаленного ядра. Остальная масса рассредоточилась по периферии, сформировав огромный диск.
С течением времени ядро увеличивало температуру, давление и плотность. И на следующем этапе превратилось в протозвезду. Далее при достижении критических значений температуры и давления в ядре начали происходить термоядерные реакции: водород стал превращаться в гелий. Так протозвезда прекратила свое существование, уступив место звезде, которую люди на Земле назвали Солнцем.
Солнце
Солнце – это звезда, которая дала начало всему живому в Солнечной системе. Вокруг него обращаются планеты, карликовые планеты и их спутники, астероиды, кометы, метеориты и космическая пыль.
Солнце возникло около 5 млрд. лет назад, представляет собой сферический, раскаленный плазменный шар и имеет массу, которая более чем в 300 тыс. раз превышает массу Земли. Температура на поверхности составляет более 5000 градусов Кельвина, а температура ядра – более 13 млн. К.
Солнце является одной из самых больших и самых ярких звезд в нашей галактике, которая носит название галактика Млечного Пути. Солнце находится на расстоянии около 26 тыс. световых лет от центра Галактики и делает полный оборот вокруг него примерно за 230-250 млн. лет! Для сравнения, Земля делает полный оборот вокруг Солнца за 1 год.
Самая большая и самая маленькая планета солнечной системы
Плутон — это планета или уже нет?
Плутон признавался самой маленькой планетой солнечной системы. Однако в последнее время возникало немало вопросов о том, правильно ли считать Плутон планетой. Почему? Вот несколько фактов, которые дали повод усомниться в том, можно ли этот объект называть планетой:
- Масса Плутона меньше массы Луны — спутника Земли. Ее недостаточно для того, чтобы Плутон расчистил пространство на орбите от других тел. Орбита же Плутона населена многими объектами, которые имеют такой же состав.
- Обнаружение за орбитой Плутона тела, имеющего большую массу и диаметр. Этот объект получил название Эрида.
- Центр масс системы Плутон-Харон (Харон — спутник) лежит вне этих двух тел.
Многое стало понятно после детальных исследований пояса Койпера. Он состоит из множества ледяных объектов диаметром от 100 км. Сам же Плутон имеет диаметр 2400 км.
После ряда подобных открытий перед астрономами возникла задача заново дать определение понятию планета.
Одним из требований являлось то, что планета должна суметь расчистить пространство вокруг своей орбиты. Именно это и стало причиной исключения Плутона из списка планет и присвоения ему названия карликовой планеты.
Планеты земной группы включая самую маленькую
Планеты солнечной системы вращаются по орбитам. Первые 4 по порядку планеты солнечной системы обобщают как земную группу:
- Меркурий — это самая маленькая и ближайшая к светилу планета. Период ее вращения вокруг звезды занимает 88 дней.
- Венера. Она вращается вокруг своей оси в противоположном направлении относительно движения по орбите. Еще одной такой планетой является Уран. Венера — самая жаркая планета. Температура атмосферы достигает +470°С.
- Земля — третья по порядку от Солнца планета солнечной системы. Она имеет самую большую плотность и диаметр в своей группе. Здесь в атмосфере есть свободный кислород. Земля имеет один естественный спутник — Луну.
- Марс. Атмосфера четвертой планеты состоит из углекислого газа. Из-за наличия оксида железа в грунте, планета имеет красноватый оттенок.
Планеты гиганты включая самую большую
- Юпитер — самая большая планета. Ее масса в 318 раз превышает массу нашей планеты. Она состоит из Н (гидрогена) и Не (гелия), имеет множество спутников, один из которых по размеру больше даже Меркурия.
- Сатурн. Он известен нам благодаря своим кольцам. Планета имеет множество спутников.
- Уран. Эта планета имеет наименьшую массу среди гигантов. Она отличается тем, что угол наклона ее оси к плоскости равняется почти 100°. Поэтому об этой планете можно сказать, что она не столько вращается, сколько катится по своей орбите.
- Нептун. Период вращения — 248 лет. Она является последней планетой, однако далеко не последним телом в солнечной системе.
Выше на фото изображены планеты солнечной системы и реальное соотношение их размеров.
Форма, размер и рельеф Земли
Земной шар является 3-м по отдаленности от Солнца. На сегодняшний день это единственная планета с живыми организмами. Ее возраст примерно 4,5 млрд. 3,8 млрд. лет назад на ней велась активная вулканическая деятельность, дули сильные ветры, шли проливные дожди. В результате начали формировать первые материки и океаны. Примитивная жизнь зародилась около 2,5 млрд. лет назад.
В результате долгих исследований учеными было установлено, что форма Земли – эллипсоид, сплюснутый с двух сторон. В связи с этим ее экваториальный радиус немного больше, чем полярный. Самыми отдаленными точками от центра Земного шара считаются гора Уаскаран и вулкан Чимборасо.
На Земном шаре выделяют 6 материков и 5 океанов. 2/3 земной поверхности занято водами Мирового океана, и только лишь 1/3 – это суша.
Все неровности на земной поверхности называют рельефом Земли. Формировался он на протяжении многих тысячелетий в результате внешних и внутренних процессов. Основные события, которые влияют на формы рельефа Земли:
- движение тектонических структур, что приводит к формированию разломов, появлению складок, извержению вулканов;
- выветривание – на образование рельефа также влияют ветры, вода, живые организмы;
- деятельность человека.
Рельеф земной поверхности меняется очень медленно, для этого требуются миллионы лет. Только в результате какого-нибудь стихийного бедствия может произойти моментальная смена формы незначительного участка Земли.
Всего существует четыре основных формы рельефа Земли: горы, плато, холмы, равнины.
- Горы – возвышенности, высота которых превышает 500 метров. Они занимаю 25% рельефа поверхности Земли. Самая высокая точка планеты – г. Эверест, ее высота 8848 м. В число высочайших пиков также входят Чогори, Лхоцзе, Макалу Чо-Ойю.
- Равнины – основная форма рельефа Земли. В эту группу попадает любая территория, в пределах которой разница между самой низкой и самой высокой точкой не превышает 200 метров. Крупнейшими равнинами планеты считаются – Амазонская низменность, Восточно-Европейская равнина, Среднесибирское плоскогорье, Аравийское плоскогорье, Западно-Сибирская низменность.
- Холмы – небольшие возвышенности. Средняя высота 200 метров. Как правило, они не объединяются в системы, а располагаются одиночно.
- Плато – это определенные участки равнин, расположившиеся на некой возвышенности. Они бывают и на суше, и на морском дне.
Как появилась Солнечная система, и как она развивалась
Солнечная система образовалась 4,568 миллиарда лет назад в процессе гравитационного коллапса региона в гигантском молекулярном облаке из водорода, гелия и небольших количеств элементов потяжелее, синтезированных предыдущими поколениями звезд. Когда этот регион, который должен был стать Солнечной системой, коллапсировал, сохранение углового момента заставило его вращаться быстрее.
Центр, где собралась большая часть массы, начал становиться все горячее и горячее окружающего диска. По мере того как сжимающаяся туманность вращалась быстрее, она начала выравниваться в протопланетарный диск с горячей, плотной протозвездой в центре. Планеты образовались аккрецией этого диска, в котором пыль и газ стягивались вместе и объединялись, чтобы сформировать более крупные тела.
Из-за более высокой температуры кипения, только металлы и силикаты могут существовать в твердой форме близко к Солнцу и в конечном итоге образуют планеты земной группы — Меркурий, Венеру, Землю и Марс. Поскольку металлические элементы были лишь небольшой частью солнечной туманности, планеты земной группы не смогли стать очень большими.
В отличие от этого, планеты-гиганты (Юпитер, Сатурн, Уран и Нептун) образовались за точкой между орбитами Марса и Юпитера, где материалы были достаточно холодными, чтобы летучие ледовитые компоненты оставались твердыми (на снеговой линии).
Льды, которые сформировали эти планеты, были более многочисленны, чем металлы и силикаты, которые сформировали внутренние планеты земной группы, что позволило им расти достаточно массивными, чтобы захватить крупные атмосферы из водорода и гелия. Оставшийся мусор, который никогда не станет планетами, собрался в регионах вроде пояса астероида, пояса Койпера и облака Оорта.
За 50 миллионов лет давление и плотность водорода в центре протозвезды стали достаточно высокими, чтобы начался термоядерный синтез. Температура, скорость реакции, давление и плотность увеличивались, пока не было достигнуто гидростатическое равновесие.
В этот момент Солнце стало звездой главной последовательности. Солнечный ветер от Солнца создал гелиосферу и смел оставшиеся газ и пыль протопланетарного диска в межзвездное пространство, заканчивая процесс формирования планет.
Солнечная система будет оставаться практически такой же, какой мы ее знаем, пока водород в ядре Солнца не будет полностью преобразован в гелий. Это произойдет примерно через 5 миллиардов лет и ознаменует конец главной последовательности жизни Солнца. В это время ядро Солнца коллапсирует и выход энергии будет значительно больше, чем сейчас.
Наружные слои Солнца расширятся примерно в 260 раз шире текущего диаметра, и Солнце станет красным гигантом. Расширение Солнца, как ожидается, испарит Меркурий и Венеру и сделает Землю непригодной для жизни, поскольку обитаемая зона выйдет за орбиту Марса. В конце концов, ядро станет достаточно горячим, чтобы начался гелиевый синтез, Солнце еще немного пожжет гелий, но потом ядро станет сокращаться.
В этот момент внешние слои Солнца направятся в космос, оставив позади белый карлик — чрезвычайно плотный объект, который будет иметь половину изначальной массы Солнца, но по размерам будет с Землю. Выброшенные внешние слои сформируют планетарную туманность, вернув часть материала, сформировавшего Солнце, в межзвездное пространство.
Солнечная система: строение и структура
Для своего удобства астрономы выделяют в Солнечной системе несколько областей или зон.
Внутренняя Солнечная система
Внутренняя Солнечная система — это зона внутри пояса астероидов, то место, где солнце дает достаточно тепла для того, чтобы вода могла существовать в виде жидкости или пара. Внутренние области Солнечной системы включают в себя Солнце и расположенные неподалеку четыре небольшие планеты — Меркурий, Венеру, Землю и Марс. Их называют планетами земной группы (или внутренними планетами). Они похожи друг на друга как по размерам, так и по массе. Кроме того похоже их внутреннее строение: ядра планет земной группы состоят из смеси железа и никеля, а поверхность и мантия — в основном из горных пород.
Наша Земля — самая крупная из внутренних планет.
За орбитой Марса есть место для еще одной небольшой планеты. Однако ее там нет. Вместо планеты здесь находится пояс астероидов, в состав которого входит больше миллиона небольших тел. Когда-то среди астрономов была популярна гипотеза о существовании на этом месте планеты Фаэтон, которая по каким-то причинам разрушилась на множество осколков. Но впоследствии эта теория не подтвердилась.
Внешняя Солнечная система
Внешняя Солнечная система — это царство холодных планет гигантов.
Юпитер — следующая планета по удалению от Солнца после Марса. Это самая большая и массивная планета Солнечной системы. Масса Юпитера более чем в 300 раз больше массы Земли. Планета обладает мощным полем тяготения. Считается, что именно притяжение Юпитера не дало сформироваться планете в поясе астероидов.
Удивительно, но Юпитер не является твердым телом! В отличие от планет земной группы у него попросту нет твердой поверхности. Это так называемый газовый гигант. Юпитер почти целиком состоит из водорода и гелия с небольшими примесями других газов. По своему составу планета очень похожа на Солнце.
Вслед за Юпитером находится Сатурн, еще одна газовая планета-гигант. Сатурн немного меньше Юпитера и легче его, зато окружен яркими и красивыми кольцами, которые можно рассмотреть даже в небольшой телескоп.
Еще дальше располагаются планеты Уран и Нептун. Иногда их называют планетами близнецами из-за большого сходства. В целом по своим характеристикам Уран и Нептун также довольно похожи на Юпитер и Сатурн — это тоже планеты гиганты, обладающие очень мощными атмосферами. Но есть и различия: Уран и Нептун меньше по размерам и имеют в своем составе не только газ, но и лед. Уран и Нептун очень холодные планеты, температура верхних слоев их атмосфер едва достигает -200°С (с глубиной температура медленно растет).
Юпитер, Сатурн, Уран и Нептун часто называют просто внешними планетами. Также за Юпитером и Сатурном закрепилось название газовые гиганты, а за Ураном и Нептуном — ледяные гиганты.
Пояс Койпера
За орбитой Нептуна находится широкая область небольших ледяных тел — пояс Койпера. Пояс простирается на сотни миллиардов километров от Солнца и потому является отдельной большой зоной Солнечной системы. Объекты, населяющие пояс Койпера, по своим размерам и форме похожи на астероиды главного пояса, но, в отличие от них, состоят не из камня и металлов, а в основном изо льда. Самый первый объект пояса Койпера — Плутон — был открыт в 1930 году. Сегодня Плутон считается одной из шести карликовых планет.
Облако Оорта
Наконец, далеко за поясом Койпера находится резервуар ледяных планетезималей (Облако Оорта). Он окружает Солнечную систему со всех сторон подобно гигантской сфере и содержит порядка тысячи миллиардов кометных ядер, а возможно и больше. Астрономы полагают, что облако Оорта удалено от Солнца на расстояние до 100000 астрономических единиц, то есть находится почти на полпути к ближайшей звезде. На таком громадном расстоянии ни один объект облака Оорта нельзя увидеть даже в самый мощный телескоп. Но мы все же уверены в существовании облака благодаря тому, что время от времени оттуда прилетают новые кометы.
Как движутся объекты Солнечной системы вокруг Солнца?
Все планеты и астероиды движутся вокруг Солнца более или менее в одной плоскости (она называется эклиптикой) и в том же направлении, что и Земля. Если принять за «верх» северный полюс Земли, то планеты движутся против часовой стрелки. На нашем небе движение планет на фоне звезд происходит с запада на восток.
Другое дело кометы и объекты пояса Койпера — они могут двигаться совершенно по-разному (по часовой стрелке и против часовой) а также под большими углами к эклиптике.
Размер, масса и орбита
Между Венерой и Землей наблюдается много сходства, поэтому соседку часто именуют сестрой Земли. По массе – 4.8866 х 1024 кг (81.5% от земной), поверхностная площадь – 4.60 х 108 км2 (90%), а объем – 9.28 х 1011 км3 (86.6%).
Расстояние от Солнца до Венеры достигает 0.72 а. е. (108 000 000 км), а мир практически лишен эксцентриситета. Ее афелий достигает на 108 939 000 км, а перигелий – 107 477 000 км. Так что можно считать, что это наиболее круговой орбитальный путь среди всех планет. На нижнем фото удачно продемонстрировали сравнение размеров Венеры и Земли.
Сравнение размеров Венеры и Земли
Когда Венера располагается между нами и Солнцем, то подходит к Земле ближе всех планет – 41 млн. км. Подобное случается раз в 584 дней. На орбитальный путь тратит 224.65 дней (61.5% от земного).
Экваториальный
радиус |
6051,5 км |
---|---|
Средний радиус | 6051,8 км |
Площадь поверхности | 4,60·108 км² |
Объём | 9,38·1011 км³ |
Масса | 4,86·1024 кг |
Средняя плотность | 5,24 г/см³ |
Ускорение свободного
падения на экваторе |
8,87 м/с² 0,904 g |
Первая космическая скорость | 7,328 км/с |
Вторая космическая скорость | 10,363 км/с |
Экваториальная скорость
вращения |
6,52 км/ч |
Период вращения | 243,02 дней |
Наклон оси | 177,36° |
Прямое восхождение
северного полюса |
18 ч 11 мин 2 с 272,76° |
Склонение северного
полюса |
67,16° |
Альбедо | 0,65 |
Видимая звёздная
величина |
−4,7 |
Угловой диаметр | 9.7″–66.0″ |
Венера – не совсем стандартная планета и многим выделяется. Если почти все планеты по порядку в Солнечной системе совершают обороты против часовой стрелки, то Венера делает это по часовой. К тому же процесс происходит медленно и один ее день охватывает 243 земных. Выходит, что сидерический день превосходит по длительности планетарный год.
Перигелий | 107 476 259 км 0,71843270 а. е. |
---|---|
Афелий | 108 942 109 км 0,72823128 а. е. |
Большая полуось | 108 208 930 км 0,723332 а. е. |
Эксцентриситет
орбиты |
0,0068 |
Сидерический периодобращения | 224,698 дней |
Синодический периодобращения | 583,92 дней |
Орбитальная скорость | 35,02 км/с |
Наклонение | 3,86° (относительно солнечного экватора); 3,39458° (относительно эклиптики); 2,5° (относительно инвариантной плоскости) |
Долгота восходящего узла | 76,67069° |
Аргумент перицентра | 54,85229° |