Двигатель д-18т: технические характеристики и последние отзывы
Содержание:
Интересные факты
- По официальным данным, на 2010 год 100 машин Ил-18 в мире разбились или не подлежат восстановлению, катастрофы привели к гибели 2352 человек.
- Статистика показывает, что на территории Советского Союза, позднее РФ и СНГ лётных происшествий из-за отказов двигателей и систем самолёта Ил-18 не зафиксировано, всего по 1977 год произошло 16 катастроф и пять из них случились при посадках в СМУ в горах.
- В среде пилотов Ил-18 носил прозвище «Дельфин» из-за характерной формы носового обтекателя РЛС.
- Ил-18 был героем эпизодов многих художественных фильмов, он появлялся на экранах в 12 кинокартинах.
- Владимир Высоцкий упомянул Ил-18 в песне «Ещё бы не бояться мне полётов».
- В 20 городах, пять из них в Западной Европе, остальные на территории бывшего СССР, стоят памятники легендарному пассажирскому лайнеру Ил-18.
Ил-18
Благодаря своей экономичности, комфортабельности и безопасности Ил-18 долгое время являлся главным пассажирским самолётом СССР для авиалиний средней протяженности. Производство Ил-18 продолжалось с 1958 по 1970 гг. Далее приоритет отдавался в пользу разработке реактивных самолётов. Несмотря на это некоторое количество Ил-18 активно находится в эксплуатации по сей день.
Лучшие авиадвигатели для истребителей с точки зрения их тяги
Невозможно определить, какой авиационный двигатель лучше, а какой хуже, ведь это сложные инженерные изделия, характеризуемые множеством различных характеристик и создаваемые для различных типов летательных аппаратов, предназначенных для выполнения разных задач. Поэтому их можно сравнивать только по отдельным параметрам. Если выбрать тройку лидеров среди двигателей для истребителей с учетом их тяги, то в ней окажется продукция российских и американских производителей.
Тяга – один из ключевых параметров двигателя боевого самолета
В авиации тягой называют силу, толкающую самолет в воздушной среде. Ей противостоит лобовое сопротивление. Если машина летит прямолинейно и горизонтально с постоянной скоростью, то тяга будет примерно равна лобовому сопротивлению. Чаще всего тягу измеряют в килоньютонах (кН) или килограмм-силах (кгс). Грубо на одну килограмм-силу приходится 10 ньютонов. А если точно, то 1 кгс = 9,80665 Н.
Используя этот показатель, отберем три самых лучших двигателя по тяге. Чтобы упростить задачу, будем сравнивать их тягу по максимальному показателю в режиме форсажа.
Двигатели для семейства истребителей Су-27
Российские истребители Су-27, Су-30 и Су-35 относятся к единому семейству. Основой для проектирования конструкции более поздних Су-30 и Су-35 стал Су-27. В боевом самолете Су-27 используется турбореактивный двухконтурный двигатель АЛ-31Ф с форсажной камерой. На каждый истребитель устанавливают по два таких двигателя. Их также используют для оснащения истребителей Су-30. Такой двигатель в режиме форсажа способен развивать максимальную тягу 122,6 кН.
В более новом истребителе Су-35 применен уже другой двигатель – АЛ-41Ф1С, обладающий управляемым вектором тяги. Это изделие, как и предыдущее, имеет длину 4,9 метра и диаметр 1,2 метра. Несмотря на то, что новый агрегат имеет такие же габариты, он способен развивать гораздо большую тягу, чем предшественник. Она составляет уже 142,2 кН.
Американский чемпион F-22
Истребители F-22, выпускаемые в США, оборудованы двигателями Pratt&Whitney F119-PW-100. На сегодняшний день их выпущено более 500 единиц. Это изделие представляет собой двухвальный двигатель, оснащенный роторами высокого и низкого давления с противовращением. По тяге, которая составляет почти 155 кН, F119-PW-100 имеет полное право на звание лидера среди двигателей для истребительной авиации. Правда с некоторыми оговорками.
Как говорилось ранее, тяга является далеко не единственной характеристикой. Поэтому из-за большей массы максимальная скорость, развиваемая F-22, ниже, чем скорость Су-35, хоть американец и развивает большую тягу, чем россиянин.
Помимо этого, как оказалось, двигатели F119-PW-100 вырабатывают свой ресурс быстрее, чем рассчитывали. Поэтому ВВС США уже начинают испытывать дефицит этих изделий.
С другой стороны, если ресурс двигателей подходит к концу, это говорит об их интенсивной эксплуатации. А активное использование изделий свидетельствует о том, что он нашел свое место в американской военной авиации и вполне устраивает по своим характеристикам своих пользователей.
Унифицированный российский авиадвигатель
В июле этого года управляющий директор Опытно-конструкторского бюро имени Люльки при Уфимском моторостроительном ПО Евгений Семивеличенко рассказал агентству РИА Новости о начале разработки нового универсального авиадвигателя для истребителей Су-27, Су-30 и Су-35. При этом изделие можно устанавливать на любой из трех типов самолетов без доработки планера. Планируется улучшение технических характеристик двигателя по сравнению с предшественниками, причем в нем будут задействованы узлы, уже задействованные в предыдущих моделях.
Унификация двигателей для истребителей разных типов является положительным фактором с точки зрения экономики их производства. При этом станет дешевле и проще обслуживать эту технику в частях.
И когда создадут первый прототип нового двигателя, будет интересно узнать его технические характеристики, в том числе и развиваемую тягу.
Описание
Силовой агрегат Д 21 – бескомпрессорный 2-цилиндровый четырехтактный мотор воздушного охлаждения, запуск которого осуществляется электростартером. Для очистки дизельного топлива применяются два фильтра. Сначала горючее попадает в фильтр-отстойник, а затем очищается с помощью фильтра тонкой очистки, где сменный фильтрующий элемент изготовлен из фильтровальной бумаги или пряжи.
Вибрации, характерные для двухцилиндровых моторов устраняются с помощью оригинальной уравновешивающей схемы. Она конструктивно выполнена в виде вала с закрепленными противовесами.
Газораспределительный механизм (ГРМ) включает в свой состав:
ГРМ приводится в действие от коленвала с помощью газораспределительных шестерен. С помощью этих же шестерен приводятся в действие насосы и уравновешивающий вал.
Конструктивно все составные части мотора закрепляются на основном блоке, корпус которого отлит из серого чугуна. В нем предусмотрены опоры для подшипников распредвала (3 шт.) и вала механизма уравновешивания (2 шт.). Посадочные места для установки гильз цилиндров в дальнейшем растачиваются.
Гильзы цилиндров также отливаются из серого чугуна. На их наружных поверхностях имеются тонкостенные ребра, предназначенные для охлаждения. Внутренние стенки цилиндров термической обработке не подвергаются, однако при изготовлении обрабатываются с высокой точностью. Их «зеркальная» поверхность отличается также высокой степенью чистоты поверхности.
Головка цилиндра отливается из алюминиевого сплава и затем подвергается термообработке. Шатуны изготовлены из хромистой стали.
Техническое обслуживание: возможные неисправности
Двигатель Д-18Т — устройство мощное и надежное. Однако техобслуживание его должно производиться вовремя и только лицензированными, прошедшими специальное обучение специалистами.
Неисправности у этого двигателя могут выявляться, к примеру, такие:
-
двигатель не запускается после нажатия на соответствующую кнопку;
-
после запуска происходит резкий перегрев мотора;
-
ротор начинает вращаться, но не раскручивается;
двигатель работает неустойчиво.
Все эти и любые другие неисправности должны, конечно же, немедленно полностью устраняться. Только после этого двигатель можно допускать к эксплуатации. Чтобы свести к минимуму работу по поиску и устранению проблем, специалисту следует использовать в том числе и бортовую информацию. Это позволяет понять, при каких условиях возникла неисправность.
Летно-технические характеристики самолета Ил-18
Эскизный проект был утвержден Сергеем Ильюшиным 26 августа 1956 года, в сентябре началась постройка первого опытного самолета.
Первый полет опытный самолет совершил 4 июля 1957 года, перелетев с Центрального аэродрома имени Фрунзе на Ходынском поле в Москве на летную базу в городе Жуковском (продолжительность полета 1 час 57 минут).
Самолет Ил-18 представляет собой цельнометаллический моноплан с низкорасположенным крылом, на котором размещены четыре турбовинтовых двигателя АИ-20, и оперением палубной схемы. Отличительной особенностью самолета Ил-18 является применение герметичного фюзеляжа с системами кондиционирования и наддува воздуха от компрессора двигателя, обеспечившими нормальные условия для пассажиров и экипажа на любой высоте полета.
Первый опытный самолет Ил-18 (производства 1957 года) был рассчитан на 75 пассажирских мест или 12 тонн коммерческого груза и имел два салона на 10 и 65 мест соответственно, разделенных буфетом с выходными дверями в начале первого и в конце второго салонов. Первые серийные самолеты уже представляли собой модификацию Ил-18А (1958). При летных эксплуатационных испытаниях самолета с мощными турбовинтовыми двигателями выяснилось, что для борьбы с шумом и вибрацией требуется значительно увеличить массу звукоизоляции. Генеральный конструктор принял решение о перекомпоновке пассажирских салонов с размещением в самых шумных зонах помещений, где во время полета пассажиры совсем не бывают или заходят туда лишь на некоторое время. Таким образом в зоне винтов оказались гардероб и буфет. Одновременно было увеличено число пассажирских мест с 75 до 89 в двух салонах и произведено частичное усиление теплозвукоизоляции.
Самолет Ил-18Б (1958-1959) отличается от Ил-18А увеличением максимального коммерческого груза с 12 до 14 тонн и максимальной взлетной массы с 58 до 61,2 тонн с одновременным усилением элементов шасси и крыла при сохранении компоновки салонов.
На самолете Ил-18В (1960-1965) были перекомпонованы пассажирские салоны и перенесены входные двери в вестибюли, разделяющие пассажирскую кабину на три салона с числом мест 20, 55 и 14 соответственно. В переднем вестибюле в зоне винтов размещались гардеробы и туалеты, в заднем — буфет. В 1963-1964 годах на самолете было установлено дополнительное и улучшенное пилотажно-навигационное оборудование.
На самолете Ил-18Е (1965-1966), в отличие от Ил-18В, число пассажирских мест было увеличено до 120 с максимальной плотностью компоновки и дальнейшим улучшением комфорта: модернизированы туалеты, гардеробы и буфет, улучшена отделка салонов, установлены более комфортабельные кресла.
Самолет Ил-18Д (1965-1969) отличался увеличенной максимальной дальностью полета (до 6500 километров), полученной вследствие размещения дополнительных емкостей топлива в подфюзеляжной части центроплана и соответственно увеличения взлетной массы самолета с 61,2 до 64 тонн и замены двигателей АИ-20К двигателями АИ-20М. Одновременно на самолете была установлена бортовая система управления заходом на посадку.
На базе самолета также создано несколько модификаций для перевозки грузов, военных и научных целей. Для полетов в Антарктиду впервые в 1962 году на Ил-18В были установлены дополнительные баки вместо кресел пассажирской кабины, благодаря чему запас топлива увеличился с 23 500 до 31 000 литров.
В феврале 1981 года Ил-18 совершил перелет Москва — Антарктида вдоль меридиана, проходящего по Восточной Африке. Перелет протяженностью 15 950 километров был совершен с двумя промежуточными посадками за 25 летных часов.
Производство Ил-18 продолжалось с 1958 года по 1970 год.
Самолет Ил-18 положил начало широкому развитию международных авиалиний Аэрофлота и массовому авиаэкспорту. За создание Ил-18 группе конструкторов во главе с Сергеем Ильюшиным в 1960 году была присуждена Ленинская премия.
Летно-технические характеристики: Размах крыла: 37,42 м Длина самолета: 35,90 м Высота самолета: 10,17 м Площадь крыла: 140,0 кв. м Масса: пустого самолета — 35000 кг, максимальная взлетная — 64000 кг. Внутреннее топливо: 22700 литров + 7300 литров опционально в баках на концах крыльев Тип двигателя: 4 ТВД Прогресс (Ивченко) АИ-20М Мощность: 4 х 4252 л.с. Максимальная скорость: 685км/ч Крейсерская скорость: 625 км/ч Практическая дальность: 6500 км Дальность действия: 3700 км Практический потолок:10000 м Экипаж: 5 человек Полезная нагрузка:120 пассажиров или 13500 кг груза
Подготовлено на основе материалов из открытых источников
Программное обеспечение
Включает общее и функциональное программное обеспечение (ПО).
В состав общего ПО входит операционная система Windows 7 «Pro» (64-разрядная). Функциональное программное обеспечение представлено программой управления комплексом MIC «Recorder».
В программе управления комплексом MIC метрологически значимой частью ПО «Recorder» является метрологический модуль scales.dll (таблица 1).
Уровень защиты ПО «высокий» в соответствии с Р 50.2.077- 2014.
Таблица 1 — Идентификационные данные функционального ПО
Идентификационные данные (признаки) |
Значение |
Идентификационное наименование ПО |
scales.dll |
Номер версии (идентификационный номер) ПО |
1.0.0.8 |
Цифровой идентификатор ПО |
24CBC163 |
Алгоритм вычисления идентификатора ПО |
CRC32 |
Неисправности
НЕИСПРАВНОСТЬ | ПРИЧИНА |
Глухой стук в нижней части картера, усиливающийся при резком увеличении числа оборотов коленвала. | Износ подшипников коленчатого вала. |
Глухой шум среднего тона в зоне передвижения поршня. | Износ или проворачивание шатунного вкладыша. |
Глухой шум низкого тона в зоне коренных опор коленвала. | Износ вкладышей коренных подшипников. |
Перебои в работе мотора на малых оборотах, шипение в топливопроводах, трудности при его запуске. | Неисправен газораспределительный механизм: |
неплотное прилегание клапанов к седлам; | |
нарушены тепловые зазоры в приводе клапанов; | |
поломка клапанных пружин; | |
износ деталей механизма. |
ДВИГАТЕЛЬ Д-21 ТРАКТОРА Т-25: ОБЩЕЕ УСТРОЙСТВО
Блок-картер двигателя Д-21 (Трактор Т-25)
Блок-картер (рис. 9 и 10) отливается из серого чугуна. Внутри картера имеются три опоры коренных подшипников коленчатого вала, две опоры подшипников распределительного вала и две опоры подшипников валика уравновешивающего механизма. На верхней плоскости блок-картера расположены два расточенных отверстия 4 для установки цилиндров, восемь резьбовых отверстий 3 для вворачивания силовых анкерных шпилек, крепящие головки цилиндров и цилиндры, и четыре отверстия 5 под запрессовку втулок толкателей. Для предотвращения течи масла из картера между блок-картером и опорной поверхностью цилиндра ставится прокладка из медной фольги толщиной 0,3 мм. Для увеличения жесткости блок-картера его нижняя плоскость опущена на 126 мм ниже оси постелей под коренные подшипники коленчатого вала. Крышки коренных подшипников (бугели) фиксируются боковыми торцами (устанавливаются с натягом по боковым поверхностям) и каждая крышка крепится на двух шпильках с помощью гаек и замковой шайбы. Постели коренных подшипников
расточены вместе с крышками, поэтому замена крышек на новые или перестановка их недопус-тимы. На каждой крышке нанесен порядковый номер, начиная от передней плоскости картера. Крышки коренных подшипников устанавливаются в блок-картере при сборке двигателя таким образом, чтобы паз под ус вкладыша был обращен к правой стороне двигателя. Для удобства демонтажа каждая крышка имеет резьбовое отверстие М10, в которое вворачивается специальный съемник или болт.
Подшипниками распределительного вала служат втулки из антифрикционного чугуна, запрессованные в расточки блок-картера, каждая втулка имеет отверстие для подвода смазки к шейкам распределительного вала. Передняя втулка снабжена буртиком, в который упирается торец шестерни распределительного вала.
Подшипниками валика уравновешивающего механизма служат бронзовые втулки, которые имеют канавки по наружной поверхности и отверстия для подвода смазки к шейкам валика.
На передней стенке (рис. 10) выполнены канал для подвода масла от первого коренного подшипника коленчатого вала к передней шейке распределительного вала, канал подвода масла к отверстию под палец промежуточной шестерни распределения, а от него — к пальцу 1 промежуточной шестерни привода валика уравновешивающего механизма и далее к переднему подшипнику валика уравновешивающего механизма и к шестерне привода топливного насоса. Отверстие 3 на фрезерован-ной площадке служит для подвода масла от масляного насоса в магистраль двигателя. На той же стенке сделаны гладкие отверстия под установочные штифты 2, фиксирующие передний лист, и резьбовые отверстия крепления переднего листа.
На задней стенке размещены каналы подвода масла от третьего коренного подшипника к задним подшипникам распределительного вала и валика уравновешивающего механизма и канал, выходящий на левую стенку блока в верхней задней части, для подсоединения трубки подвода масла к головкам цилиндров. Здесь также предусмотрены два отверстия для запрессовки установочных штифтов 2, фиксирующих положение картера маховика относительно блок-картера.
Описание
Принцип действия АИИС при измерении физических величин (массового и объемных расходов, давления, плоского угла, силы тяги, виброскорости, относительной влажности, напряжения и силы постоянного и переменного тока) основан на преобразовании измеряемых физических величин первичными измерительными преобразователями (1111) в электрические сигналы, функционально связанные с измеряемыми физическими величинами, с последующим преобразованием, нормализацией и передачей их по каналам связи в измерительные модули комплекса измерительно-вычислительного MIC-036R (регистрационный номер в Федеральном информационном фонде 20825-09, далее — MIC) для цифрового преобразования и регистрации измеренных величин с последующей передачей для отображения средствами вычислительной техники.
Конструктивно АИИС состоит из: стойки приборной АИИС, шкафа кроссового АИИС, пульта управления испытаниями, комплекса измерений температур MIC-140 (регистрационный номер в Федеральном информационном фонде 46517-11), комплекта 1111, комплекта кабелей.
Функционально АИИС включает в себя измерительные каналы (ИК) разделенные на две группы:
Первая группа — ИК физических величин, состоящие из ПП, преобразующие измеряемые физические величины в электрические сигналы и вторичной аппаратуры для последующего измерения этих электрических сигналов и пересчета их в значения физических величин. К ней относятся:
ИК расходов массового и объемного;
ИК давлений абсолютных, относительных и разряжений газообразных и жидких сред;
ИК силы от тяги;
ИК температуры, измеренной 1111 термоэлектрического типа ХА(К);
ИК температуры, измеренной 1111 терморезистивного типа 100П;
ИК относительной влажности;
ИК виброскорости;
ИК плоского угла;
ИК напряжения постоянного тока бортсети;
ИК напряжения, силы и частоты переменного трехфазного тока.
Вторая группа — ИК физических величин, состоящие только из вторичной аппаратуры измерений электрических параметров, соответствующих значениям физических параметров, рассчитываемых по известным градуировочным характеристикам ПИП, не входящих в состав АИИС. К этим ИК относятся:
ИК частоты переменного тока, соответствующей частоте вращения роторов;
ИК напряжения постоянного тока, соответствующего значениям температуры газообразных сред в диапазоне преобразований ПП термоэлектрического типа ХА (К);
ИК сопротивления постоянному току, соответствующего значениям температуры жидких и газообразных сред в диапазоне преобразований ПП терморезистивного типа 100П;
ИК напряжения постоянного тока, соответствующего значениям виброскорости корпуса газотурбинного двигателя (ГТД).
По условиям эксплуатации система удовлетворяет требованиям гр. УХЛ 4.2 по ГОСТ 15150-69 с диапазоном рабочих температур от 10 до 30 °С и относительной влажностью окружающего воздуха от 30 до 80 % при температуре 25 °С без предъявления требований по механическим воздействиям.
Защита от несанкционированного доступа к компонентам системы обеспечивается:
— запиранием ключом замка на дверях стоек приборных (рисунок 18);
— запиранием ключом замка на дверях шкафа кроссового (рисунок 19);
— наклеиванием наклейки (рисунок 20) на двери шкафа кроссового и на остальные компоненты системы.
Общий вид составных частей средства измерений представлен на рисунках 1 — 16.
Места расположения наклеек и запирания стойки приборной АИИС показаны на рисунке 17. _
Рисунок 8 — Преобразователь расхода
объемного первичный ТПР11. Вид внешний объемного первичный ТПР14. Вид внешний
Рисунок 20 — Наклейка. Вид внешний
На пути к импортонезависимости
ПД-8 и ПД-35 разрабатываются на базе первого полностью российского турбовентиляторного двигателя ПД-14, которым будет оснащаться парк пассажирских самолётов МС-21. Первый полёт с этой силовой установкой одна из модификаций лайнера (МС-21-310) должна совершить до конца 2020 года.
Ранее для МС-21 закупались агрегаты PW1400G американской компании Pratt & Whitney. Как отмечают эксперты, в условиях санкционного режима создание ПД-14 позволяет России не зависеть от Запада в поставках своих самолётов отечественным и зарубежным заказчикам.
- Российский лайнер МС-21 с отечественными агрегатами ПД-14
Проект ПД-14 был запущен в рамках программы по созданию двигателей тягой от 9 до 18 т. По информации «Ростеха», российские специалисты создавали этот агрегат «на основе проверенных временем конструкторских решений» с применением современных отечественных технологий и материалов.
«Конструкторами было разработано и внедрено 16 ключевых технологий, например лопатки турбины из легчайшего интерметаллида титана или продвинутая система охлаждения, позволяющая турбине работать при температуре до 2000 °К (1726,85 °C. — RT)», — говорится в материалах корпорации.
Появление ПД-14 открыло для России технологическую возможность изготавливать высокоэффективные двигатели различной мощности. Один из них — ПД-8 тягой в 8 т, работы над которым должны быть завершены в 2022 году.
Такой агрегат необходим для оснащения узкофюзеляжных пассажирских лайнеров Ан-148 и SSJ-100, а также самолёта-амфибии Бе-200ЧС. В настоящее время Sukhoi Superjet 100 летает на российско-французском SaM146, Ан-148 и Бе-200 — на Д-436 производства запорожской компании «Мотор-Сич».
Также по теме
«Решение масштабных задач»: как Россия планирует замещать зарубежные авиационные двигатели
В России появилось конструкторское бюро по созданию новых двигателей для самолётов и БПЛА. Его костяк составили учёные Самарского…
В 2018 году Таганрогский авиационный научно-технический комплекс им. Г.М. Бериева объявил о ремоторизации парка Бе-200, которая предполагает замену украинских агрегатов на SaM146.
Тем не менее, как отмечают в «Ростехе» и «Объединённой авиастроительной корпорации» (ОАК), в перспективе российские амфибии и SSJ-100 всё же будут оснащаться ПД-8. Кроме того, технологическая база этого агрегата позволяет устанавливать его и на вертолёты.
«Сейчас есть надежда, что мы двигатель (ПД-8. — RT) получим в 2022 году. В 2023 году пройдём в первую очередь на SSJ-100, и дальше на самолёте Бе-200 мы достигнем абсолютно 100%-ной импортонезависимости от Украины», — рассказал журналистам глава ОАК Юрий Слюсарь в октябре на полях «Гидроавиасалона-2020».
Из технического задания по проекту ПД-8, которое размещено на сайте госзакупок, следует, что крейсерская скорость самолёта, оснащённого этим агрегатом, составит 0,78—0,82 чисел Маха, максимальное время полёта — до 10 часов, температурный диапазон работы на земле — от -55 °С до +55 °С. Конструкция двигателя должна позволять носителю подниматься на высоту до 14 км.
ПД-8 получит цифровую электронную систему автоматического управления и будет соответствовать нормам Международной организации гражданской авиации (ICAO) по шуму и эмиссии вредных веществ.
Ещё одной важной особенностью ПД-8 станет система электропитания и коммутации агрегатов СЭПК-8, к которой предъявляются жёсткие требования по вибрации и взрывозащите. Её созданием занимается холдинг «Технодинамика»
- Сборка авиационного двигателя
«Считаю, что эта силовая установка будет востребована на отечественном авиационном рынке, поскольку имеет широкий спектр применения на региональных самолётах, а также применяться в перспективных вертолётах. Кроме того, уверен, что полученные компетенции при разработке систем для ПД-8 и ПД-14 помогут нам в аналогичных работах для авиадвигателя ПД-35», — заявил ранее генеральный директор холдинга «Технодинамика» Игорь Насенков.
«Достаточно скоро мы должны увидеть и первые результаты работ по ПД-8. Его появление позволит России производить и продвигать заказчикам самолёты-амфибии без оглядки на Украину, а также сократить долю импортных комплектующих в SSJ-100», — сказал Пантелеев.
История создания
Разработка двигателя была поручена ЗМКБ «Прогресс», руководимому тогда Генеральным конструктором В. А. Лотаревым. По воспоминаниям В. Г. Анисенко, в основу первого проекта Д-18 лёг американский двигатель General Electric TF39 тягой 18200 кгс, применённый на самолёте Lockheed C-5A. Однако, как выяснилось, это был чисто военный малоресурсный мотор. А руководство Министерства авиационной промышленности СССР хотело иметь единый двигатель большой размерности, пригодный для использования и в гражданской авиации, например, на Ил-86. С этой точки зрения более подходящим аналогом был признан Rolls-Royce RB211-22. В 1976 с целью его закупки в Великобританию отправилась делегация МАП во главе с замминистра по двигателестроению А. Н. Дондуковым. В конечном итоге делегации была поставлена задача скопировать RB.211-22, для чего требовалось закупить на выделенные 12 млн долларов не менее 8 экземпляров двигателя. Однако англичане поняли план копирования и выдвинули категорическое требование, что продадут мотор только в количестве, достаточном для оснащения не менее 100 самолётов. В итоге натурный образец двигателя получен не был, а создание Д-18Т пошло своим путём, на основе опыта разработки Д-36.
Создание двигателя Д-18Т для сверхтяжёлых транспортных самолётов Ан-124 «Руслан» и Ан-225 «Мрия» стало новым крупным шагом для ЗМКБ. Эта разработка потребовала решения целого ряда научно-технических проблем в области газодинамики, прочности, теплообмена, трёхмерного математического моделирования, автоматизации проектирования и технологии производства. В качестве прототипа для газодинамического моделирования Д-18Т был использован Д-36 с некоторой корректировкой основных узлов.
Технические данные Д-18Т для своего времени находились на уровне лучших зарубежных двигателей для гражданской авиации. Его низкий удельный расход топлива обеспечен большими значениями степени повышения давления и степени двухконтурности. Малая удельная масса двигателя определяется высокими параметрами рабочего цикла, его рациональной конструкцией, применением современных материалов и технологии. Как и Д-36, Д-18Т выполнен по трёхвальной схеме. Он состоит из 17 модулей, которые могут заменяться непосредственно эксплуатантами без капитальных заводских ремонтов, что позволяет эксплуатировать двигатель по техническому состоянию.
Опытная партия двигателей Д-18Т по сложившейся к тому времени традиции изготавливалась в кооперации с Запорожским моторостроительным заводом, которому в 1985 г. было поручено и серийное производство. Высокие параметры двигателя и его большие габариты (диаметр вентилятора составляет 2,3 м) требовали решения сложнейших технических проблем при разработке, производстве, испытаниях и доводке двигателя, коренной реконструкции производственной базы разработчика и изготовителя, а также ряда предприятий — поставщиков оборудования, заготовок, подшипников и т. д. Двигатель удовлетворяет требованиям норм лётной годности НЛРС-2, FAR, BCAR, требованиям ICAO по уровням эмиссии загрязняющих веществ и шума. Он имеет сертификат типа, выданный АР МАК.
Д-18Т и политика
Ни для кого не секрет, что отношения России и Украины в последнее время значительно ухудшились. Это сказалось, конечно же, в том числе и на экономике обоих государств. На настоящий момент российские АН-124 и АН-225 летают все еще именно на двигателях Д-18Т (фото их представлено на странице) производства запорожского предприятия. Однако вскорости ситуация может измениться.
Российское правительство решило оснастить грузовые самолеты «Руслан» и «Мрия» двигателями отечественного производства. Начнется замена предположительно в 2020 г. В качестве базовой модели на сегодняшний день (2017 г.) рассматривается НК-32 серии 2. Этот двигатель в свое время разрабатывался под бомбардировщик «Белый лебедь». Преимуществом его считается наличие в конструкции турбины, способной выдерживать длительный высокотемпературный режим.
Смотреть галерею
Одной из основных проблем при создании новой модели двигателя для АН-124 и 225 конструкторы считают изменение габаритов аналога НК-32. Ведь модель должна помещаться в те отсеки, в которых на настоящий момент устанавливаются Д-18Т.