Звезды сверхгиганты

Образование и эволюция

После стадии главной последовательности, когда звезда израсходовала водород в ядре, и некоторого его сжатия, в нём начинается реакция горения гелия. Внешние слои звезды сильно расширяются, и, хотя светимость увеличивается, поток через поверхность звезды уменьшается, и она остывает. Этот процесс, а также дальнейшая судьба звезды, зависит от её массы.

Звёзды малой массы

Звезды с самой маленькой массой, по разным оценкам, до 0,25–0,35 солнечных масс, никогда не станут гигантами. Такие звёзды полностью конвективны, и поэтому водород расходуется равномерно и продолжает участвовать в реакции до тех пор, пока не израсходуется полностью. Модели показывают, что звезда будет постепенно разогреваться и станет голубым карликом, но гелий в ней не загорится — температура внутри её так и не станет достаточно высокой. После этого звезда превратится в белого карлика, состоящего преимущественно из гелия. Однако, наблюдательных данных, подтверждающих это, нет: срок жизни красных карликов может достигать 10 триллионов лет, в то время как возраст Вселенной — порядка 14 миллиардов лет.

Звёзды со средней массой

Внутренняя структура подобной Солнцу звезды и красного гиганта.

Если масса звезды превышает этот предел, то она уже не полностью конвективна, и когда звезда потребит весь водород, доступный в её ядре для термоядерных реакций, её ядро начнёт сжиматься. Водород начнёт сгорать уже не в ядре, а вокруг него, из-за чего звезда начнёт расширяться и охлаждаться, и немного увеличит светимость, став субгигантом. Гелиевое ядро будет увеличиваться и в какой-то момент его масса превысит предел Шёнберга — Чандрасекара. Оно быстро сожмётся, и, возможно, станет вырожденным. Внешние слои звезды расширятся, а также начнётся перемешивание вещества, так как конвективная зона тоже увеличится. Так звезда станет красным гигантом.

Если масса звезды не превышает ~0,4 массы Солнца, то гелий в ней так и не загорится, и, когда водород закончится, звезда сбросит оболочку и станет гелиевым белым карликом.

Если же масса звезды больше ~0,4 массы Солнца, то температура в ядре в какой-то момент достигнет 108 K, в ядре произойдет гелиевая вспышка и запустится тройной альфа-процесс. Внутри звезды понизится давление, следовательно, понизится светимость, и звезда перейдёт с ветви красных гигантов на горизонтальную ветвь.

Постепенно в ядре заканчивается и гелий, и в то же время накапливается углерод и кислород. Если масса звезды меньше 8 солнечных, то ядро из углерода и кислорода сожмётся, станет вырожденным, и горение гелия будет происходить вокруг него. Как и в случае с вырождением гелиевого ядра, начнётся перемешивание вещества, которое повлечёт за собой увеличение размеров звезды и рост светимости. Эта стадия называется асимптотической ветвью гигантов, на которой звезда находится лишь около миллиона лет. После этого звезда станет нестабильной, потеряет оболочку и от неё останется углеродно-кислородный белый карлик, окруженный планетарной туманностью.

Звёзды с большой массой

У звёзд главной последовательности с большими массами (более 8 солнечных масс) после формирования углеродно-кислородного ядра начнёт сгорать углерод в термоядерных реакциях. Кроме того, в таких звёздах стадия горения гелия начинается не в результате гелиевой вспышки, а постепенно.

В звёздах с массами от 8 до 10–12 солнечных впоследствии могут сгорать и более тяжёлые элементы, но до синтеза железа не доходит. Их эволюция, в целом, оказывается такой же, как и у менее массивных звёзд: они также проходят стадии красных гигантов, горизонтальную ветвь и асимптотическую ветвь гигантов, а затем становятся белыми карликами. Они отличаются большей светимостью, а белый карлик, который от них остаётся, состоит из кислорода, неона и магния. В редких случаях происходит взрыв сверхновой.

Звёзды с массой более 10–12 солнечных имеют очень большую светимость, и на этих стадиях эволюции их относят к сверхгигантам, а не к гигантам. Они последовательно синтезируют всё более тяжёлые элементы, доходя до железа. Дальнейший синтез не происходит, так как энергетически невыгоден, и в звезде образуется железное ядро. В некоторый момент ядро становится таким тяжелым, что давление больше не может поддерживать вес звезды и самого себя, и коллапсирует с выделением большого количества энергии. Это наблюдается как взрыв сверхновой, а от звезды остаётся либо нейтронная звезда, либо чёрная дыра.

Как появляются звезды гиганты и сверхгиганты

Как известно, находясь на главной последовательности светило производит энергию благодаря реакциям, происходящим внутри ядра. То есть оно расходует водород. За счёт чего синтезируется гелий. Но он не участвует в термоядерных процессах.

А вот после того, как водородный запас иссякает, ядро сжимается и в ход идёт гелий. При его сгорании внешние слои, наоборот, расширяются. Следовательно, увеличивается температура и площадь излучаемой поверхности.

В результате светимость повышается. Однако высвобождение энергии становится меньше, и поверхность уменьшается. Как следствие, она охлаждается. Правда, дальнейшую судьбу решает масса звёздного тела.

UY Щита (Красный гипергигант)

Эволюция светил малой массы

Например, если массивность меньше 0,35 массы нашего Солнца, то эволюционировать в гигантское светило не сможет. Скорее всего, его ждёт стадия голубого, а затем белого карлика.

При условии, что звезда имеет среднюю массу, а весь водород сгорит, ядро сожмётся. После этого начнётся горение водорода возле ядра. Что позволит внешним слоям расшириться и остыть. Причем светимость несколько увеличится.

Собственно говоря, объект, прошедший стадию главной последовательности, в котором ещё не горит гелий, относится к классу звезды субгиганты.

Возможно, что у светила масса гелиевого ядра увеличится до предела Чандрассекара. В таком случае, оно резко уплотнится и уменьшится. Либо ядро выродится, либо расширятся внешние слои. При последнем сценарии также возрастёт пространство конвективной зоны, а вещество перемешается. В итоге, тело станет красным гигантом.

Звезда Пистолет (Синий гипергигант)

Светила средней массы

Разумеется, массивность играет важную роль в развитии небесных тел, в том числе и звёзд. К примеру, учёные выявили как продолжают свою жизнь объекты с различными значениями по этой характеристике.

Сценарии развития:

  • С массой не более 0,4 солнечной, горение гелия не начинается. Тогда по окончании водорода внешняя оболочка сбрасывается. И образуется белый гелиевый карлик.
  • При массе больше 0,4 нашего Солнца в ядре вспыхивает гелий. В то же время внутреннее давление падает, светимость снижается и светило переходит на, так называемую, горизонтальную ветвь эволюции.
  • Когда масса несколько меньше 8 солнечных масс, а в ядре гелиевые ресурсы прекращаются, повышается углеродно-кислородное содержание. Далее ядро сжимается и вокруг запускается горение гелия. Причем перемешивание вещества приводит к росту размера и светимости. На этой стадии звёздный объект находится на асимптотической ветви с инертным центром. После чего он, спустя примерно миллион лет становится нестабильным, и формируется в углеродно-кислородный белый карлик.

Таким образом получается, что звезда прошедшая стадию красного гиганта называется белым карликом.

Большая масса

Что важно, при значениях больше 8 солнечных масс вслед за образованием углеродно-кислородного ядра в термоядерных реакциях начинает принимать участие и углерод. Между прочим, гелиевое сгорание запускается не вспышкой, а постепенно

По данным учёных, в светилах с массивностью от 8 до 12 Солнца в дальнейшем возможно горение других, более тяжёлых элементов. Правда, в них железо ещё не горит.

Они проходят этапы эволюции по аналогии с представителями средних значений. Однако их светимость выше, а уцелевший белый карлик имеет другой состав. Если говорить точнее, он богат на кислород, магний и неон. В некоторых случаях может произойти взрыв сверхновой, но это очень редкое явление.

Арктур (Оранжевый гигант)

А вот при массе более 12 солнечных отмечается ещё более высокая светимость. Тогда их уже относят к сверхгигантам. В них синтез протекает с участием всё более тяжёлых элементов, вплоть до железа. Из-за чего образуется железное ядро, которое в последствии коллапсирует, то есть взрывается как сверхновая. В результате формируется нейтронная звезда или чёрная дыра.

Солнце как красный гигант

Жизненный цикл Солнца В настоящее время Солнце является звездой среднего возраста, и возраст Солнца оценивается приблизительно в 4,57 миллиарда лет. Солнце будет оставаться на главной последовательности ещё приблизительно 5 миллиардов лет, постепенно увеличивая свою яркость на 10 % каждый миллиард лет, после чего водород в ядре будет исчерпан.

После этого температура и плотность в солнечном ядре повысятся настолько, что начнётся горение гелия, и гелий начнёт превращаться в углерод. Размеры Солнца вырастут как минимум в 200 раз, то есть почти до современной земной орбиты (0,93 а.е.)Меркурий и Венера, несмотря на сильную потерю массы Солнца к моменту перехода на стадию красного гиганта, будут им поглощены и полностью испарятся. Земля, если не разделит их судьбу, будет разогрета настолько, что шансов на сохранение жизни не будет никаких. Океаны же испарятся задолго до перехода Солнца на стадию красного гиганта, приблизительно через 1,1 миллиарда лет.

На стадии красного гиганта Солнце будет находиться приблизительно 100 миллионов лет, после чего превратится в планетарную туманность с белым карликом в центре; планетарная туманность рассеется в межзвёздной среде в течение нескольких тысячелетий, а белый карлик будет остывать в течение от многих миллиардов до 100 квинтиллионов лет.

Звёзды типа Вольфа-Райе

Такие звёзды характеризуются высокими светимостями, превышающими солнечную в, примерно, 4000 раз, и температурами, большими, чем 50000 К. Размеры таких звёзд сравнительно небольшие, порядком в 10-15 раз больше нашего Солнца, и массы, примерно, 10 солнечных.

Звёзды Вольфа-Райе отличаются от других звёзд, с такими же температурами, своими особыми спектрами.

Этот класс ночных светил имеет свои спектральные виды звёзд:

  • WN – в их спектрах обнаружены линии азота и гелия;
  • WO – в спектрах таких звёзд сильные линии кислорода;
  • WC – богатые углеродом.

Окончательную точку, в вопросе о происхождении звёзд Вольфа-Райе, ещё не поставили. Однако популярной является гипотеза, по которой эти звёзды представляют собой гелиевые остатки больших и массивных звёзд.

В нашей галактике, на сегодняшний день, открыто 230 звёзд этого вида.

Примечания

  1. Giant star, entry in Astronomy Encyclopedia, ed. Patrick Moore, New York: Oxford University Press, 2002. ISBN 0-19-521833-7.
  2. ↑ giant, entry in The Facts on File Dictionary of Astronomy, ed. John Daintith and William Gould, New York: Facts On File, Inc., 5th ed., 2006. ISBN 0-8160-5998-5.
  3. Twentieth Century Physics / Brown, Laurie M.; Pais, Abraham  (англ.) (рус.; Pippard, A. B.  (англ.) (рус.. — Bristol; New York: Institute of Physics, American Institute of Physics, 1995. — С. 1696. — ISBN 978-0-7503-0310-1.
  4. Patrick Moore. The Amateur Astronomer. — Springer, 2006. — ISBN 978-1-85233-878-7.
  5. Giant star, entry in Cambridge Dictionary of Astronomy, Jacqueline Mitton, Cambridge: Cambridge University Press, 2001. ISBN 0-521-80045-5.
  6. Evolution of Stars and Stellar Populations, Maurizio Salaris and Santi Cassisi, Chichester, UK: John Wiley & Sons, Ltd., 2005. ISBN 0-470-09219-X.
  7. Structure and Evolution of White Dwarfs, S. O. Kepler and P. A. Bradley, Baltic Astronomy 4, pp. 166–220.
  8. Eldridge, J. J.; Tout, C. A. Exploring the divisions and overlap between AGB and super-AGB stars and supernovae (англ.) // Memorie della Società Astronomica Italiana : journal. — 2004. — Vol. 75. — P. 694. — . — arXiv:astro-ph/0409583.
  9. Кононович Э.В., Мороз В.И. Общий курс астрономии. — 2-е, исправленное. — УРСС, 2004. — С. 413. — 544 с. — ISBN 5-354-00866-2.
  10. . Астронет.
  11.  (англ.). — характеристики звезды в базе SIMBAD. Дата обращения: 9 декабря 2008.
  12. Джим Калер.  (англ.). — описание звезды на сайте профессора Джима Калера. Дата обращения: 9 декабря 2008.

  13.  (англ.). — характеристики звезды в базе SIMBAD. Дата обращения: 9 декабря 2008.
  14.  (англ.). — характеристики звезды в базе SIMBAD. Дата обращения: 9 декабря 2008.

  15.  (англ.). — характеристики звезды в базе SIMBAD. Дата обращения: 9 декабря 2008.

  16.  (англ.). — характеристики звезды в базе SIMBAD. Дата обращения: 9 декабря 2008.

  17.  (англ.). — характеристики звезды в базе SIMBAD. Дата обращения: 9 декабря 2008.

Происхождение цвета звезд

Цвет звезды зависит от температуры на её поверхности. Показатель поверхностной температуры нашего Солнца превосходит 6,000 градусов Кельвина. Несмотря на то, что с Земли оно кажется жёлтым, из космоса солнечные свет выглядит ослепительно белым. Это яркое белое солнечное свечение образуется именно благодаря такой высокой температуре. Если бы Солнце было холоднее, то его свет приобрёл бы более тёмный оттенок, ближе к красному, а если бы эта звезда была горячее, то была бы голубого цвета.

Секрет разноцветности звезд стал важным орудием астрономов – цвет светил помог им узнать температуру поверхности звезд. В основу легло примечательное природное явление – соотношение между энергией вещества и цветом излучаемого им света.

Наблюдения на эту тему вы уже наверняка сделали сами. Нить маломощных 30-ваттных лампочек горит оранжевым светом – а когда напряжение в сети падает, нить накала едва тлеет красным. Более сильные лампочки светятся желтым или даже белым цветом. А сварочный электрод во время работы и кварцевая лампа светятся голубым. Однако смотреть на них ни в коем случае не стоит – их энергия настолько велика, что может с легкостью повредить сетчатку глаза.

Соответственно, чем горячее предмет, тем ближе его цвет его свечения к голубому – а чем холоднее, тем ближе к темно-красному. Звезды не стали исключением: такой же принцип действует и на них. Влияние состава звезды на ее цвет очень незначительное – температура может скрывать отдельные элементы, ионизируя их.

Но именно анализ цветового спектра излучения звезды помогает выяснить ее состав. Атомы каждого вещества имеют свою уникальную пропускную способность. Световые волны одних цветов беспрепятственно проходят сквозь них, когда другие останавливаются – собственно, по блокированным диапазонам света ученые и определяют химические элементы.

Примеры голубых сверхгигантов

Ригель

Самый известный пример – Ригель (бета Ориона), самая яркая звезда в созвездии Орион, масса которой приблизительно в 20 раз больше массы Солнца и его светимость примерно в 130 000 раз выше солнечной, а значит, это одна из самых мощных звёзд в Галактике (во всяком случае, самая мощная из ярчайших звёзд на небе, так как Ригель – ближайшая из звёзд с такой огромной светимостью). Древние египтяне связывали Ригель с Сахом – царём звёзд и покровителем умерших, а позже – с Осирисом.

Гамма Парусов

Гамма Парусов – кратная звезда, ярчайшая в созвездии Паруса. Имеет видимую звёздную величину в +1,7m. Расстояние до звёзд системы оценивается в 800 световых лет. Гамма Парусов (Регор) – массивный голубой сверхгигант. Имеет массу в 30 раз больше массы Солнца. Его диаметр в 8 раз больше солнечного. Светимость Регора – 10 600 солнечных светимостей. Необычный спектр звезды, где вместо тёмных линий поглощения имеются яркие эмисионные линии излучения, дал название звезде как «Спектральная жемчужина южного неба»

Альфа Жирафа

Расстояние до звезды примерно 7 тысяч световых лет, и тем не менее, звезда видна невооружённым глазом. Это третья по яркости звезда в созвездии Жирафа, первое и второе место занимают Бета Жирафа и CS Жирафа соответственно.

Дзета Ориона

Дзета Ориона (имеет название Альнитак) – звезда в созвездии Ориона, которая является самой яркой звездой класса O с визуальной звездной величиной +1,72 (в максимуме +1,72 и в минимуме до +1,79), левая и самая близкая звезда астеризма «Пояса Ориона». Расстояние до звезды – около 800 световых лет, светимость примерно 35 000 солнечных.

Тау Большого Пса

Спектрально-двойная звезда в созвездии Большого Пса. Она является наиболее яркой звездой рассеянного звёздного скопления NGC 2362, находясь на расстоянии 3200 св. лет от Земли. Тау Большого Пса – голубой сверхгигант спектрального класса O с видимой звёздной величиной +4,37m. Звёздная система Тау Большого Пса состоит, по крайней мере, из пяти компонентов. В первом приближении Тау Большого Пса – тройная звезда в которой две звезды имеют видимую звёздную величину +4,4m и +5,3m и отстоят друг от друга на 0,15 угловых секунд, а третья звезда имеет видимую звёздную величину +10m и и отстоит от них на 8 угловых секунд, обращаясь с периодом 155 дней вокруг внутренней пары.

Дзета Кормы

Дзета Кормы – ярчайшая звезда созвездия Кормы. Звезда имеет собственное имя Наос. Это массивная голубая звезда, имеющая светимость 870 000 светимостей Солнца. Дзета Кормы массивнее Солнца в 59 раз. Имеет спектральный класс O9.

Видео

https://youtube.com/watch?v=L3aYRb_Ww9g

https://youtube.com/watch?v=nz_pVwzFSbw

Источники

  • http://cyclowiki.org/wiki/Голубой_сверхгигантhttp://spacegid.com/tsvet-zvezdyi.htmlhttp://ru.starwars.wikia.com/wiki/Звездаhttps://ru.wikipedia.org/wiki/Голубой_сверхгигант

Строение Солнца

Мы не можем непосредственно заглянуть внутрь Солнца, поэтому представление о его внутреннем строении получаем только на основе теоретического анализа, используя наиболее общие законы физики и такие характеристики Солнца, как масса, радиус, светимость.

Солнце не расширяется и не сжимается, оно находится в гидростатическом равновесии, так как силе гравитации, стремящейся сжать Солнце, препятствует сила газового давления изнутри.

Расчеты показывают, что для поддержания гидростатического равновесия температура в центре Солнца должна быть примерно 15 • 106 К. На расстоянии 0,7R температура падает до порядка 106 К. Плотность вещества в центре Солнца около 1,5 • 105 кг/м3, что более чем в 100 раз выше его средней плотности.

Термоядерные реакции протекают в центральной области Солнца радиусом, примерно равным 0,3R. Эта область получила название ядра. Вне ядра температура недостаточна для протекания термоядерных реакций.

Энергия, выделившаяся в ядре Солнца, переносится наружу, к поверхности, двумя способами: лучистым и конвективным переносами. В первом случае энергия переносится излучением; во втором — при механических движениях нагретых масс вещества.

Лучистый перенос энергии происходит в ядре до расстояний (0,6—0,7) R от центра Солнца, далее к поверхности энергия переносится конвекцией. Проявление конвекции наблюдается в виде грануляции в фотосфере. Полное время, которое требуется энергии, выделившейся в ядре, чтобы достигнуть поверхности Солнца, составляет около 10 млн лет. Так что тот свет и тепло, которые согревают и освещают нашу Землю сегодня, были выработаны в термоядерных реакциях в центре Солнца 10 млн лет назад.

Конечно, астрономы ищут способы заглянуть внутрь Солнца и проверить теоретические представления о его строении. На этом пути им на помощь пришли физики, изучающие элементарные частицы. Дело в том, что при термоядерных реакциях синтеза гелия из водорода наряду с выделением энергии происходит рождение элементарных частиц — нейтрино. В отличие от излучения нейтрино практически не задерживается веществом. Возникая в недрах Солнца и распространяясь со скоростью, близкой к скорости света, они через 2 с покидают поверхность Солнца и через 8 мин достигают Земли. Для наблюдений солнечных нейтрино был построен специальный нейтринный телескоп, который в течение многолетних наблюдений и зарегистрировал ожидаемый поток нейтрино от Солнца. Эти наблюдения окончательно подтвердили правильность наших теоретических моделей строения Солнца как звезды. Поэтому мы в полной мере можем использовать полученные результаты для разработки моделей других звезд. Другие звезды главной последовательности по строению во многом похожи на Солнце.

Типы звезд Вселенной

Главная последовательность – это период существования звезд Вселенной, во время которого внутри её проходит ядерная реакция, являющийся самым длинным отрезком жизни звезды. Наше Солнце сейчас находится именно в этом периоде. В это время звезда претерпевает незначительные колебания в яркости и температуре.

Продолжительность такого периода зависит от массы звезды. У крупный массивных звёзд он короче, а у мелких длиннее. Очень большим звёздам внутреннего топлива хватает на несколько сотен тысяч лет, в то время, как малые звёзды, как Солнце, будут сиять миллиарды лет.

Она представляет собой позднюю стадию цикла, когда запасы водорода подходят к концу и гелий начинает преобразовываться в другие элементы. Повышение внутренней температуры ядра приводит к коллапсу звезды.

Внешняя поверхность звезды расширяется и остывает, благодаря чему звезда приобретает красный цвет. Красные гиганты очень велики. Их размер в сто раз больше обычных звёзд.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Белый карлик – это то, что остаётся от обычной звезды, после того, как она проходит стадию красного гиганта. Когда у звезды больше не остаётся топлива, она может выделять часть своей материи в космос, образуя планетарную туманность. То, что остаётся – это мёртвое ядро.

Ядерная реакция в нем не возможна. Оно сияет за счёт своей оставшейся энергии, но она рано или поздно кончается, и тогда ядро остывает, превращаясь в чёрного карлика. Белые карлики – очень плотные.

По размеру они не больше Земли, но массу их можно сравнить с массой Солнца. Это невероятно горячие звёзды, их температура достигает 100,000 градусов и более.

Во время своего жизненного цикла некоторые протозвёзды никогда не достигают критической массы, чтобы начать ядерные процессы. Если масса протозвезды составляет лишь 1/10 массы Солнца, её сияние будет недолгим, после чего она быстро гаснет.

То, что остаётся и есть коричневый карлик. Это массивный газовый шар, слишком большой, чтобы быть планетой, и слишком, маленький, чтобы стать звездой. Он меньше Солнца, но в несколько раз больше Юпитера.

Коричневые карлики не излучают ни света, ни тепла. Это лишь тёмный сгусток материи, существующий на просторах Вселенной.

Цефеиды обычно изменяют свою светимость в начале жизни и в её завершении. Они бывают внутренними (изменяющими светимость в связи с процессами внутри звезды) и внешними, меняющими яркость вследствие внешних факторов, как, например, влияние орбиты ближайшей звезды. Это ещё называется двойной системой.

Многие звёзды во Вселенной являются частью больших звёздных систем. Двойные звёзды – это система из двух звёзд, гравитационно-связанных между собой. Они вращаются по замкнутым орбитам вокруг одного центра масс.

Доказано, что половина всех звёзд нашей галактики имеют пару. Визуально парные звёзды выглядят, как две отдельные звезды. Их можно определить по смещению линий спектра (эффект Доплера).

[править] Известные голубые сверхгиганты

  • 29 Большого Пса, главный компонент системы — голубой сверхгигант спектрального класса O. Компаньон является бело-голубым карликом главной последовательности спектрального класса OB.
  • Ригель — голубой сверхгигант в созвездии Ориона, ярчайшая звезда этого созвездия. Лучшее время наблюдения в России — конец осени-зима-начало весны.
  • Дзета Кормы — ярчайшая звезда созвездия Кормы. Звезда имеет собственное имя Наос. Является убегающей звездой.
  • Альнитак, Альнилам, Минтака — голубые сверхгиганты, образующие на небе Пояс Ориона.
  • HDE 226868/Лебедь X-1, двойная система, состоящая из голубого сверхгиганта массой в 20-50 масс Солнца и темного компактного объекта, массой в 7-14 масс Солнца, что делает его кандидатом в чёрные дыры.
  • Дзета Змееносца — убегающая звезда.
  • Парус X-1 — система из голубого сверхгиганта и рентгеновского пульсара.

Блицар, потомок нейтронной звезды

Звезды такого типа – гипотетические объекты, существование которых могло бы объяснить быстрые радиовсплески (FRB), первый из которых был обнаружен в 2011 году. Про блицары на Хабре уже писали, вкратце напомню суть этого явления.

В физике известен предел Оппенгеймера-Волкова, максимальная масса, при которой нейтронная звезда еще не превращается в черную дыру. При этом данный предел рассчитывается без учета вращения, присущего многим нейтронным звездам и унаследованного от родительской звезды. Центробежная сила, возникающая при таком вращении, не дает звезде «упасть» в черную дыру, поэтому нейтронная звезда может некоторое время существовать выше предела Оппенгеймера-Волкова. В этот период звезда генерирует сильное магнитное поле, из-за которого вокруг нее исчезает аккреционный диск. В результате при падении нейтронной звезды за горизонт событий от нее «отстреливается» не вещество, а только мощное магнитное поле, что и может быть зафиксировано как быстрый радиовсплеск.

Блицары также можно считать гипотетическими объектами, поскольку непосредственно они не зафиксированы. Такие небесные тела также называются «суронами», где SURON – аббревиатура, означающая «SUpramassive Rotating Neuron star» (подмассивная вращающаяся нейтронная звезда). Физика суронов подробно изложена в этой работе; также отмечается (раздел 3.3.2), что в состоянии сурона (блицара) может удерживаться примерно 3% всех нейтронных звезд — большинству из них центробежной силы все-таки не хватает, чтобы балансировать на грани горизонта событий.

Двойные, тройные и так далее

Двойные звезды — вовсе не редкость во Вселенной: почти половина всех светил живут парами. Обычно они рождаются вместе, из одного пылевого облака. Их связывает гравитация — и ничто не может разлучить. Если звезды родились близнецами, то есть одинаковыми по размеру и массе, то они вращаются вокруг общего центра. Если же одна из звезд крупнее, тогда центр масс находится ближе к ней.

Бывают и тройные звездные системы, где три светила, объединенные гравитацией, существуют как единое целое. В таких системах обычно две звезды вращаются рядом, а третья — вокруг них по большей орбите.

Четверная звезда обычно представляет собой союз двух звездных пар, объединенных общим центром вращения. Четыре звезды для звездной системы вовсе не предел, иногда звезды объединяются по пять, шесть и более, но это встречается очень редко. Все системы звезд, в которых больше двух членов, ученые называют кратными.

Иногда то, что кажется наблюдателю с Земли двойной звездой, на самом деле — совершенно разные звезды, расположенные в космосе очень далеко друг от друга. Такие явления называются оптическими двойными звездами.

Поделиться ссылкой

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector