Твёрдотопливный ускоритель

SABRE

SABRE расшифровывается как Synergetic Air Breathing Rocket Engine, синергический воздушно-реактивный ракетный двигатель. Эта силовая установка состоит из нескольких ступеней: воздухозаборника, предохладителя, компрессора, системы охлаждения, камеры сгорания, сопла и «прямоточных дожигателей».

В полете воздух будет попадать в воздухозаборник, где будет происходить его сжатие и, как следствие, нагрев. На скоростях около 5 чисел Маха нагрев воздуха может достигать 1,5 тысячи градусов — это критично высокая температура как для самого двигателя, так и для эффективного сжигания топлива.

В предохладителе, состоящем из 16800 тончайших трубок, воздух будет охлаждаться до температуры в —150 градусов Цельсия. Внутрь трубок под давлением почти в 200 атмосфер закачивается жидкий гелий, выполняющий роль теплоносителя.

После предохладителя воздух поступает в компрессор, способный сжимать его до 140 атмосфер, после чего сжатый воздух поступает в камеру сгорания ракетной части двигателя. Тягу будут создавать отработавшие газы, истекающие из сопла.

Гелий, нагреваясь от воздуха и от этого расширяясь, в предохладителе сначала будет поступать в зону турбины, раскручивая ее. Вращение от турбины будет передаваться на компрессор.

После турбины гелий будет подаваться в охладитель. Там его температура снизится за счет теплообмена с жидким водородом, подающимся по сети трубочек из топливного бака. Нагревшийся водород из системы охлаждения частично будет поступать в камеру сгорания ракетной части двигателя.

Разработчики отмечают, что из-за нагрева в камере охлаждения будет образовываться больше нагретого водорода, чем необходимо для работы ракетной части двигателя. Излишки водорода и будут сгорать в «прямоточных дожигателях». Последние представляют собой небольшие прямоточные воздушно-реактивные двигатели, играющие двойную роль.

Во-первых, они будут сжигать излишки водорода, внося небольшой вклад в создание тяги двигателя. Во-вторых, в них из зоны забора компрессора (расположена перед ним) будут стекать излишки воздуха, не попавшие в основной контур двигателя.

На скорости более 5,5 числа Маха воздухозаборник силовой установки будет полностью перекрываться. При этом ракетный двигатель переключится на подачу окислителя — жидкого кислорода — из кислородного бака.

Отличительной чертой комбинированного двигателя SABRE разработчики называют его относительную компактность — по своим размерам он не будет превышать турбовентиляторный двигатель F135, стоящий на американских истребителях F-35 Lightning II.

На протяжении ближайшего года Reaction Engines намерена провести серию испытаний не только предохладителя, но и нескольких других частей перспективного комбинированного двигателя.

Современные авиационные и космические разработки, помимо прочего, нацелены на уменьшение стоимости полета и запусков. Предполагается, что комбинированные двигатели помогут решить эту задачу. Но существуют и другие разработки, в том числе ротационных детонационных и гиперзвуковых прямоточных воздушно-реактивных двигателей. О некоторых из таких разработок мы рассказывали в материале «Установки на будущее».

Использовать

Звуковые ракеты

Почти все зондирующие ракеты используют твердотельные двигатели.

  • Astrobee
  • Черный Брант
  • С-310 , С-520
  • Терьер-Орион , Терьер-Малемют
  • VSB-30

Ракеты

Благодаря надежности, простоте хранения и обращения твердотопливные ракеты используются на ракетах и ​​межконтинентальных баллистических ракетах.

  • Ракеты класса «воздух-воздух»: AIM-9 Sidewinder
  • Баллистические ракеты: Иерихон , Седжил
  • МБР: LGM-30 Minuteman , UGM-133 Trident II , LGM-118 Peacekeeper , RT-2PM Topol , DF-41 , БРПЛ M51

Орбитальные ракеты

Твердотопливные ракеты подходят для запуска небольших грузов с орбитальными скоростями, особенно если используются три или более ступени. Многие из них основаны на перепрофилированных межконтинентальных баллистических ракетах.

  • Разведчик
  • Афина
  • Му
  • Пегас
  • Телец
  • Минотавр
  • Старт-1
  • PSLV — чередование твердой и жидкой стадий
  • Шавит
  • Вега
  • 11 марта
  • Омега

В более крупных орбитальных ракетах на жидком топливе часто используются твердотопливные ракетные ускорители, чтобы получить достаточную начальную тягу для запуска полностью работающей на топливе ракеты.

  • Дельта II
  • Титан IV
  • Космический шаттл
  • Система космического запуска
  • Ариана 5
  • Атлас II
  • Атлас V (опционально 1-5 бустеров)
  • Delta IV (опционально 2 или 4 ускорителя)
  • H-IIA , H-IIB
  • PSLV — дополнительные твердотельные ускорители для подъема более тяжелых грузов
  • GSLV Mk III

Твердое топливо также используется для некоторых верхних ступеней, в частности Star 37 (иногда называемой верхней ступенью «Burner») и Star 48 (иногда называемой » Вспомогательный модуль полезной нагрузки » или PAM), оба из которых первоначально были произведены Thiokol , а сегодня Northrop Grumman . Они используются для вывода больших грузов на заданные орбиты (например, спутников Глобальной системы позиционирования ) или небольших грузов на межпланетные или даже межзвездные траектории. Другой твердотопливной верхней ступенью, используемой космическими челноками и Титаном IV , была инерциальная разгонная ступень производства Boeing (IUS).

  • Pioneer 10 и Pioneer 11 были отправлены за пределы Солнечной системы на верхних ступенях Star 37E сракет Атлас-Кентавр .
  • «Вояджер-1» и « Вояджер-2″ были отправлены за пределы Солнечной системы на верхних ступенях Star 37E сракет Titan IIIE .
  • Магеллан был отправлен на Венеру на ВМС после того, как был отправлен с космического корабля » Атлантис» на STS-30 .
  • Галилей был отправлен на Юпитер на ВМС после того, как был запущен с космического корабля » Атлантис» на STS-34 .
  • «Улисс» был отправлен к Юпитеру на IUS и Star 48 PAM после того, как его отправили с космического корабля » Дискавери» на STS-41 . Затем он был переведен на полярную орбиту вокруг Солнца после гравитационного воздействия вокруг Юпитера.
  • New Horizons был отправлен из Солнечной системы на Star 48 PAM сракеты Atlas V.

Некоторые ракеты, такие как Antares (производства Northrop Grumman), имеют обязательные твердотопливные верхние ступени. Ракета Antares использует Northrop Grumman -manufactured Castor 30 в качестве верхней ступени.

Преимущества реактивного двигателя

Перед остальными видами такие:

  • Простота конструкции. Для создания простейшего реактивного двигателя достаточно камеры сгорания и сопла. В камере сгорания образуется рабочее тело с высокой тепловой энергией, которое проходя через сопло передает аппарату реактивную тягу.
  • Малое количество подвижных деталей. Для повышения эффективности работы воздушно-реактивного двигателя, созданы дополнительные механизмы. Они обеспечивают принудительное нагнетание воздуха в камеру сгорания. Их конструкция проста. Обычно это воздухозаборник с крутящимся винтом и лопастями. У ракетного таковые отсутствуют вообще.
  • Высокие удельный импульс и мощность. Удельный импульс характеризует насколько большое ускорение передается самолёту или ракете рабочим телом, что позволяет развить хорошую скорость полета. Сравнение мощностей различных типов двигателей наглядно демонстрирует преимущества реактивного: карбюраторный ДВС – 200 кВт; дизельный ДВС – 2200 кВТ.; атомный – 55 000 кВт; турбинный паровой — 300 000 кВт; реактивный – 30 000 000 кВт.
  • КПД достигает 47-60%. Этот показатель гораздо выше, чем у двигателей внутреннего сгорания (25-35%) или турбинного (27-30%). Это значит, что реактивный совершает больше полезной работы.
  • Управляемость с помощью тяги во время космических полетов. Меняя расход топлива, можно уменьшать или увеличивать скорость полета, делать манёвры и вовсе отключать двигатель, а затем снова его запускать. При этом ему не требуется взаимодействовать с другими телами.
  • Работает при низком давлении воздуха или вовсе без него в условиях безвоздушного пространства. Пока ещё не создан механизм, который зарекомендовал себя лучше в условиях космоса.

Устройство классического твердотопливного агрегата

Котлы данного типа – это модульная конструкция, которая собрана в стальном корпусе.

В нее входят следующие узлы:

  • Теплообменник
  • Прочистной люк
  • Топочная камера с дверцей
  • Колосниковая решетка
  • Терморегулятор для котлов на твердом топливе

Топочная камера предназначена для сжигания топлива. Этот процесс состоит из трех этапов: подсушивания, окисления, выделения древесного газа и его дожига. Топливо, попадая в камеру, распределяется по всей ее ширине на колосниках, расположенных наклонно.

Каждый из рассмотренных этапов сопровождается подачей в топку воздуха, при этом зола через колосниковую решетку попадает в зольник. Оттуда ее удаляют вручную.

Теплообменник – это стальная конструкция, передающая энергию от нагретого теплоносителя к холодному. Чаще всего он выполняется в виде бочки, через которую проходят дымогарные трубы. Эти газы и нагревают воду, циркулирующую внутри теплообменника. Скорость их прохождения регулируется дымососом.

Движение воды в теплоносителе поддерживается автоматически при помощи насосной станции. Вход теплообменника имеет изоляцию – это защита от перегрева обшивки твердотопливного котла. Подвод воды осуществляют через впускной коллектор, а вывод – через выпускной. Обычно они снабжаются датчиками температуры.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Твердотопливный ракетный двигатель — что это такое

Твердото́пливный раке́тный дви́гатель (или ракетный двигатель на твёрдом топливе, РДТТ) — ракетный двигатель, который использует в качестве топлива твёрдое горючее и окислитель.

Как правило такой двигатель применяется в ракетах (твёрдотопливных ракетах).

Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение лёгких твердотопливных ракет на основе различного нитроцеллюлозного топлива. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.

Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.

Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, большое количество агрессивных веществ в выхлопе наиболее распространённых видов топлива с перхлоратом аммония.

Космонавтика Править

Редко используются в советской и российской космонавтике (например, Старт (ракета-носитель)), однако широко применялись и применяются в ракетной технике других стран, например в США. В основном это элементы первой ступени (боковые ускорители):

  • Боковой ускоритель МТКК Спейс шаттл и Space Launch System.
  • Вторая ступень Наро-1 (Республика Корея), Антарес (США).
  • Семейство твердотопливных ступеней Castor (англ.) русск. .
  • Японская ракета SS-520.

В моделизме Править

В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры (или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.

В настоящее время существуют программы для расчёта характеристик таких двигателей. Наиболее популярная — «SRM» авторства Ричарда Накки (существует и русскоязычная версия).

  • Гомогенные топлива. Представляют собой твёрдые растворы (обычно — нитроцеллюлозы) в нелетучем растворителе (обычно в нитроглицерине). Применяются в небольших ракетах.
  • Смесевые топлива. Это смесь твёрдых окислителя и горючего. Наиболее значимы:
    • Дымный порох. Исторически первое ракетное топливо. Состав: селитра, древесный уголь и сера.
    • Смесевые топлива на основе перхлората аммония (окислитель) и полимерного горючего. Наиболее широко применяемое топливо для тяжёлых ракет военного и космического назначения.
    • В ракетомоделизме получило широкое распространение самодельное смесевое топливо на основе нитрата калия и органических связующих, доступных в быту (сорбит, сахар и тому подобных).
  • Известны ракетные двигатели, где горючее является твёрдым топливом, а окислитель жидким веществом и подаётся в камеру сгорания насосами по трубопроводам. Достоинствами такого топлива являются возможность управления тягой двигателя, достижение более высоких температур сгорания за счёт охлаждения камеры жидким окислителем. Такие ракетные двигатели являются промежуточными между ЖРД и РДТТ .

Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).

Конфигурации твердотопливных ракет

В описаниях твердотопливных ракет можно часто встретить следующее:

«Топливо для ракет состоит из перхлората аммония (окислитель, по весу – 69,6%), полимера (связующая смесь – 12,04%), алюминия (16%), оксида железа (катализатор – 0,4%) и эпоксидный отверждащий агент (1,96%). Перфорация сделана в форме 11-конечной звезды, находящейся в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, в т.ч. и конечном. Благодаря такой конфигурации при розжиге обеспечивается высокая тяга, а затем, через 50 с после старта, она уменьшается приблизительно на треть, предотвращая перенапряжение аппарата в период максимального динамического давления.

В этом плане объясняется не просто состав топлива, но и форма канала, который был пробуренный в центре топлива. Как выглядит перфорация в виде 11-конечной звезды, можете увидеть на фото:

Весь смысл в том, чтобы увеличить площадь поверхности канала, и соответственно, увеличить площадь выгорания, в результате чего увеличиться тяга. По мере сгорания топлива, форма меняется к кругу. Такая форма в случае с космическим шаттлом дает серьезную изначальную тягу, которая в средине полета становится немного послабее.

Твердотопливные двигатели имеют 3 важные преимущества:

  • низкая стоимость;
  • простота;
  • безопасность.

Хотя есть и 2 недостатка:

двигатель нельзя отключать или запускать повторно после зажигания;

невозможность контроля тяги.

Недостатки означают, что тип твердотопливных ракет подходит только для непродолжительных задач или систем ускорения. Если вам нужно управлять двигателем, то придется прибегнуть к системе жидкого топлива.

Двигательный тюнинг

Качество серийных двигателей, как нетрудно догадаться, для серьезных соревнований не годилось. Поэтому рядом с заводом в 1984 году появилось мелкосерийное опытное производство, обеспечивавшее своей продукцией сборную страны. Особенно выделялись двигатели, частным образом изготовленные мастером Юрием Гапоном.

Тем не менее при социализме двигатели, пусть неважные и с дефицитом, но были. Сейчас же их нет вообще. Отдельные детские ракетомодельные студии летают на старых, еще советских запасах, закрывая глаза на то, что срок годности давно вышел. Спортсмены пользуются услугами пары мастеров-одиночек, а если повезет, то и контрабандными чешскими двигателями. Любителям же остается единственный путь — перед тем как стать Королевым, сначала стать Глушко. То есть делать двигатели самим. Чем, собственно, и занимались я и мои друзья в детстве. Слава богу, пальцы и глаза у всех остались на месте.

Дизайн

Проектирование начинается с необходимого общего импульса , который определяет массу топлива и окислителя . Затем выбираются геометрия и химический состав зерна, чтобы удовлетворить требуемые характеристики двигателя.

Следующие варианты выбираются или решаются одновременно. В результате получаются точные размеры зерна, геометрии сопла и корпуса:

  • Зерно горит с предсказуемой скоростью, учитывая его площадь поверхности и давление в камере.
  • Давление в камере определяется диаметром горловины сопла и скоростью горения зерна.
  • Допустимое давление в камере зависит от конструкции корпуса.
  • Продолжительность горения определяется толщиной зерна.

Зерно может или не может быть прикреплено к оболочке. Двигатели с кожухом проектировать труднее, так как деформация корпуса и пролетное зерно должны быть совместимы.

Обычные виды отказов твердотопливных ракетных двигателей включают в себя разрушение зерна, нарушение соединения корпуса и воздушные карманы в зерне. Все это приводит к мгновенному увеличению площади поверхности горения и соответствующему увеличению производительности и давления выхлопных газов, что может привести к разрыву корпуса.

Другой вид отказа — выход из строя уплотнения обсадной колонны . Уплотнения требуются в кожухах, которые необходимо открывать для загрузки зерна. Как только уплотнение выходит из строя, горячий газ разрушает путь утечки и приводит к выходу из строя. Это стало причиной катастрофы космического корабля » Челленджер» .

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Геометрия порошкового блока

Сгорает поверхность порохового блока, открытая в камере сгорания . Следовательно, геометрия канала, который проходит через блок, играет важную роль в мощности двигателя малой тяги. По мере развития горения форма канала изменяется, изменяя площадь поверхности блока пороха, подверженного горению. Объем генерируемого газа (и, следовательно, давление) зависит от мгновенной площади поверхности (м²) и скорости сгорания (м / с):
Вs{\ displaystyle A_ {s}} бр{\ displaystyle b_ {r}}

м˙знак равноρ⋅Вs⋅бр{\ displaystyle {\ dot {m}} = \ rho \ cdot A_ {s} \ cdot b_ {r}}

Форма сечения канала и его центрирование индивидуальны для каждого двигателя. Для одного и того же подруливающего устройства форма секции может также отличаться в продольном направлении (таким образом, подруливающие устройства Ariane 5 имеют звездообразный канал в верхнем сегменте и круглый канал для двух других сегментов). Наиболее часто используемые геометрии зависят от желаемой кривой тяги:

  • Круговой канал: сначала увеличивается, а затем уменьшается кривая тяги.
  • Сгорание в конце блока: порошок горит в конце цилиндра, обеспечивая очень долгое время сгорания, но с термическими напряжениями, с которыми трудно справиться, и смещением центра тяжести.
  • С-образный паз: канал имеет большие срезанные углы вдоль своей оси, что позволяет создавать длительную уменьшающуюся тягу, но с термическими напряжениями и асимметрией центра тяжести.
  • Moon Burner: эксцентрический канал производит продолжительное горение, сначала увеличивающееся, а затем уменьшающееся, что представляет собой небольшую асимметрию центра тяжести.
  • Финоцил: канал имеет форму звезды, как правило, с пятью или шестью ветвями, что позволяет создавать практически постоянную тягу со скоростью сгорания немного быстрее, чем в случае цилиндрического канала, из-за более быстрого увеличения сгорания. поверхность.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector