Как работает антирадар (радар детектор)

В чем разница?

Начнем с радар-детектора. Это приспособление, которое замечает на пути радары разных типов, чтобы предупредить владельца. В магазинах можно увидеть множество моделей таких устройств. Законодательство не запрещает их, применение легально, так как оно не создает помеха для радаров дорожных служб.

Антирадар — совсем другое. Они ищут частоту, на которой передают сигнал радары, и вносят изменения, искажая сигнал

Использование такого оборудования вне закона, и это важно понимать. Пользователи антирадара затрудняют работу сотрудников полиции и мешают поддержанию порядка на дорогах

Если полицейский увидит такой радар, то он заберет сам прибор и выпишет штраф его владельцу.

Выходит, что это разные устройства, не только по действию, но и по положению в правовом поле. Антирадары запрещены не только в России, но и во всех странах мира, где следят за порядком на дорогах. Радар-детектор разрешен в нашей стране, на территории СНГ и в большинстве европейских стран. Если ты соберешься поехать на машине в другое государство, обязательно уточни, можно ли там использовать детектор. Незнание законов не освобождает от их выполнения, а штрафы могут быть очень большими.

Понимая, в чем разница, можно сравнить принцип действия устройства каждого типа.

«Новая область науки»

Изначально научно-исследовательские и опытно-конструкторские работы в сфере радиолокации в СССР проводились в интересах войск ПВО. Первыми отечественными радарами считаются антенные комплексы «Вега» и «Конус», которые начали разрабатывать в середине 1930-х годов. В 1939 году в Красной армии появилась станция «Ревень», получившая боевое крещение в советско-финской войне.

В июне 1940 года на вооружение ВС СССР была принята более совершенная РЛС «Редут» (РУС-2), ставшая технологической основой для появления семейства «Гнейс».

  • Самолётная бортовая радиолокационная станция

Ключевую роль в создании бортовых радаров и в становлении всей радиолокационной отрасли СССР сыграл военный инженер Михаил Лобанов, получивший в 1954 году звание генерал-лейтенанта. Он проходил службу в вооружённых силах с 1919 по 1961 год. На пенсии получил известность как автор книг по истории советской радиолокации.

Принцип работы радиолокационной станции заключается в использовании эффекта отражённых от объекта радиоволн. Отражённые сигналы улавливаются аппаратурой РЛС, обрабатываются и передаются на экран индикатора, который видит оператор или лётчик.

Например, пилот самолёта, оснащённого «Гнейс-5М», мог наблюдать отметки отражённых сигналов в виде колец, радиус которых соответствовал дистанции до цели, а интенсивность свечения правой и левой половин кольца указывала на уклонение объекта наблюдения от курса полёта носителя БРЛС.

Также по теме


«В режиме ракетного и пушечного поражения»: какими возможностями обладают российские войска ПВО

В российской армии отмечается День войск противовоздушной обороны. Их основная задача — защита важнейших военных и государственных…

Главный недостаток авиационного радара заключался в слишком крупных массогабаритных характеристиках изделия. На заре радиолокации станция с источниками питания и кабелями весила примерно 500 кг. Поднять такую аппаратуру в воздух мог далеко не каждый самолёт.

Первой советской БРЛС стал комплекс «Гнейс-2», принятый на вооружение в июне 1943 года. В качестве носителя радара военные выбрали бомбардировщики Пе-2 и Ил-4. Также станции устанавливались на поставленные по ленд-лизу американские самолёты 56-й Бреславльской дивизии истребителей дальнего действия.

Правда, сведений о боевом применении «Гнейс-2» немного. Известно, что в конце 1942 года перед приёмо-сдаточными испытаниями радар был задействован в Сталинградской битве.

Михаил Лобанов в своей книге «Развитие советской радиолокационной техники» рассказал, что «Гнейс-2» позволила обнаружить в Рижском заливе три немецких транспортных судна, которые впоследствии были потоплены силами полка ВМФ. Однако точная дата инцидента в книге не указана.

В период Великой Отечественной войны самолётные БРЛС были большой редкостью — всего 230 единиц «Гнейс-2» было выпущено советской промышленностью к концу 1944 года. Экипажи советских бомбардировщиков решали боевые задачи, используя штурманские расчёты и визуальное наблюдение. А ночью истребители могли рассмотреть противника только благодаря лунному свету и зенитным прожекторам.

Естественно, применение таких методов сильно ограничивали погодные условия и технические возможности войск. Установка локаторов позволяла значительно упростить боевую работу ВВС. Однако серьёзным недостатком бортовых РЛС того времени, помимо массы и размеров, была малая дальность обнаружения целей.

  • Лётчики и техники бомбардировщика Пе-2

Так, «Гнейс-2» могла фиксировать цель типа «бомбардировщик» только за 3,5 км. Более совершенный образец семейства — радар «Гнейс-5М» — справлялся с этой задачей на расстоянии до 7—8 км. Однако, как пояснил RT обозреватель журнала «Арсенал Отечества» Дмитрий Дрозденко, труд конструкторов не был напрасным.

«Советские инженеры приложили колоссальные усилия, чтобы создать авиационные радары. Это была новая область науки, которая к тому же развивалась в условиях войны. В 1940-е годы был заложен научно-производственный фундамент, который позволил вывести авиацию СССР в мировые лидеры», — отметил Дрозденко.

Первые советские радары

В 1920-е годы ученые в СССР создали импульсную радиолокационную установку и смогли с помощью отраженного радиосигнала измерить расстояние до ионосферы. В 1925 году физики Введенский, Симанов, Халезов и Аренберг указали на возможность применения для радиолокации ультракоротких радиоволн. А в 1934 году в Ленинграде начались первые полноценные опыты с аппаратурой радиообнаружения – в январе радиолокационным методом на расстоянии 600 метров был найден самолет, летящий на высоте 150 метров.

Оборудование было создано в Центральной радиолаборатории группой Ю.К. Коровина при поддержке Ленинградского электротехнического института. Руководил экспериментом военный инженер М.М. Лобанов, который сыграл ключевую роль в становлении радиолокационного направления в промышленности. В том же 1934 году на Ленинградском радиозаводе были выпущены опытные образцы радиолокационных станций (РЛС) «Вега» и «Конус» для системы радиообнаружения самолетов «Электровизор» ученого П.К. Ощепкова. Таким образом, 1934 год можно считать годом рождения первого отечественного радара.

РЛС дальнего обнаружения «РУС-2»

В 1938 году начинается серийное производство РЛС РУС-1 и РУС-2 «Редут», которые станут основой противовоздушной обороны в начале Великой Отечественной войны. Благодаря установленной на крейсере «Молотов» радиолокационной станции были отражены первые атаки немецких бомбардировщиков на Севастополь 22 июня 1941 года. А месяц спустя комплекс РУС-2, расположенный в 100 км от Москвы, обнаружил 200 самолетов, летящих бомбить столицу. Тогда атака была отражена, немцы развернулись, потеряв 22 машины. 

В работе над первыми станциями РУС-1 принимал участие выдающийся физик А.А. Пистолькорс, создатель научной школы радиоэлектроники. Станция РУС-2 «Редут» выпускалась на заводе №339 и стала самой массовой РЛС времен войны.
 

Популярные модели радар-детекторов (антирадаров)

К категории недорогих антирадаров можно отнести радар-детекторы стоимостью до 5000 руб. В этом сегменте выделяются корейские приборы Sho-me Signature Smart и Street-Storm STR-5210EX GPS BT. Первый имеет встроенный GPS и сигнатурный фильтр, соответственно лучше работает в городе. Второй оснащен модульным GPS и имеет более лучшую дальность приема, что делает его более предпочтительным на трассе.

Оба детектора весьма популярны и справляются со своими задачами на скоростях до 150 км/ч, когда нет таких дополнительных помех, как:

  • антирадары,
  • вышки сотовой связи,
  • радиопередатчики,
  • автозаправки,
  • линии электропередач.

Высоким качеством и надежностью среди бюджетных радар-детекторов также могут похвастаться китайские модели от Supra. Например, антирадар SUPRA DRS-iG77VSTD, на наш взгляд, является одним из лучших радар-детекторов в данном ценовом сегменте. Он заранее определяет практически все современные типы радаров ГИБДД, включая «Стрелку», имеет хорошую чувствительность и защиту от ложных срабатываний.

В среднюю ценовую категорию попадают антирадары со стоимостью 6-15 тыс. руб. По сравнению с бюджетными моделями приборы из «золотой серединки» отличаются повышенной надежностью,функциональностью и числом дополнительных опций.

В данной категории стоит отметить следующие модели:

  • Street Storm STR-9540BT обладает неплохим функционалом и приличной дальностью;
  • Omni RS-500 работает очень достойно, и цена приятная. По дальности он совсем немного уступает топовым моделям в своей категории, но вот полезный функционал у него выше всяческих похвал.

Ранее популярные антирадары Whistler и Cobra в настоящее время стали менее качественными, чем раньше. А сверх дальнобойные приборы от Beltronics, в виду отсутствия в них GPS, больше в Россию не поставляются (из-за невозможности приема безрадарных комплексов по спутникам).

Автомобильные радар-детекторы высшей ценовой категории обладают самыми сложными и современными типами защиты. Они работают постоянно, обеспечивая прием сигналов радаров не только отечественной разработки, но и зарубежных аналогов. С ними уверенно можно ехать в путешествие по Европе, но при этом стоит помнить, что во многих странах ЕС использование радар-детекторов под запретом.

Высокая стоимость топовых антирадаров при активном перемещении на автомобиле будет оправдана на 100%. Среди лучших производителей элитных устройств выделяется канадская марка Escort. Их самой продаваемой и по совместительству единственной адаптируемой для России моделью является Escort RedLine EX INTL – тут есть все и в избытке. Упомянутая в начале материала дальность в 1,5-2 км обеспечивается сегодня лишь этим детектором, но и стоит он очень и очень прилично.

Выбрать свой первый радар-детектор достаточно сложно. Перед покупкой желательно ознакомиться с отзывами пользователей, изучить тесты разных моделей, почитать обзоры в интернете, определить ценовой диапазон антирадара и сферу его применения. Возможно, кто-то из друзей или знакомых посоветует приобрести проверенное ими устройство.

RADAR6

Зачем понадобились лазерные радары? Разве «обычные» не справляются?

Луч лазера позволяет осуществить «захват» конкретного автомобиля в потоке любой плотности, в то время как доплеровский работает более широким пучком сигнала и потому должен определить более быструю цель, чтобы четко идентифицировать нарушителя.

Как устроены «Стрелки»? Почему продаваемые радар-детекторы долгое время их не брали?

Система «Стрелка» анализирует как радарные, так и видеоданные. Радар определяет дальность и скорость, а компьютер по видеоизображению устанавливает полосу, по которой едет нарушитель. Все это происходит на расстоянии в пару сотен метров. Когда нарушитель подъезжает под камеру, его фотографируют с близкого расстояния, чтобы зафиксировать номер, хотя факт нарушения был установлен еще за 200 м. Т.е. измеряет система в один момент времени и далеко, а фотографирует — в другой момент и близко. При этом радар — не доплеровский, а импульсный. По времени задержки посланного импульса определяют расстояние до объекта, а после нескольких замеров высчитывают производную от дальности по времени и получают скорость. В этом радаре длительность импульса — около 30 наносекунд, а пауза между импульсами в несколько больше. Излучаемая им средняя мощность очень мала, а потому широко распространенные радар-детекторы одно время ее «не видели». Однако никакой технической сложности создание такого прибора не представляло, а потому вскоре все радар-детекторы стали обнаруживать «Стрелку» без проблем.

Описание комплекса измерения скорости ROBOT-MultiRadar

Производитель комплекса — немецкая оптико-электронная группа Jenoptik из г. Йена. Начало ее деятельности восходит к довоенной компании Zeiss. Разработки Jenoptik представлены на 70 мировых ранках. Известны и активно используются они в Швейцарии, Прибалтике, Франции, других европейских странах.

Немецкий производитель предлагает статичные, мобильные модели Robot. Среди них заметно выделяется передвижной комплекс и модель Multiradar SD580. Внешний вид этой модели напоминает скворечник, в который встроены две камеры наблюдения. Корпус MultiRadar надежно защищен от вандализма, оснащен дистанционной сигнализацией, срабатывающей при попытке взлома, а также датчиками открытия, вибрации и др. Сбить, разбить его попросту невозможно: при малейшей попытке вывести радар из строя система сразу отправляет сигнал в пункт управления.

Встретить Робота можно по большей части в мегаполисах на столбах, сбоку, возле дороги. Заметить издалека его можно, если нет помех, и он ничем не прикрыт, а вот обнаружить при помощи радара-детектора проблематично. Устанавливают прибор под углом 25 градусов, что затрудняет его обнаружение детекторами. К тому же Robot Multaradar SD практически бесшумен, поэтому его не определяют вообще, либо обнаруживают после фиксации нарушения из-за малой дальности обнаружения.

WHO IS WHO В МИРЕ РАДИОСИГНАЛОВ

И, тем не менее, ездить быстро, избегая при этом штрафов за превышение скорости, можно.

Наверное, каждый из нас хотя бы раз в жизни слышал о таком чудо-приборе, который помогает автолюбителю избежать штрафа за превышение скорости, называемым часто антирадаром.

Напомним, что данное определение употреблять некорректно, т.к. антирадаром называют устройство, которое в ответ на обнаруженное излучение радара посылает свой сигнал, искажающий показания измерителя скорости. Такие приборы достаточно сложны и запрещены к использованию в большинстве стран, поэтому встретить «живые» рабочие образцы практически невозможно.

В нашей беседе мы будем упоминать термин радар-детектор.

Его задача — заблаговременное обнаружение излучения автомобильного радара и предупреждение об этом водителя посредством аудио-, визуальной сигнализации. При этом радар детектор должен обладать хорошей защитой от ложных срабатываний, дабы не реагировать на случайные помехи, которыми богат радиоэфир крупных городов, особенно вблизи промышленных зон. Чем выше чувствительность радар-детектора, тем с большего расстояния он распознает опасность, но при этом растет вероятность ложных срабатываний от мобильных телефонов, портативных и стационарных радиостанций. Поэтому приемники сигналов оснащаются довольно сложной системой распознавания и фильтрации помех. Фактически от качества ее работы зависит спокойствие и собственно благосостояние водителя.

Особенности и принцип действия ROBOT-MultiRadar

Сочетание «Multaradar Робот» имеет определенный смысл. «Мульти» означает, что прибор фиксирует нарушения на нескольких полосах. «Робот» подразумевает автоматическое устройство, то есть принцип работы режима AUTO.

Как только транспортное средство попадает в зону действия, радар включается в работу. Работает он, соответственно, в автоматическом режиме. Базовая конфигурация не требует дополнительных устройств. ПО распознавания госномеров транспортных средств и передачи данных на сервер русифицировано.

Таким образом, камеры Robot измеряют скорость нескольких транспортных средств, которые движутся по разным полосам. Так поступают и фиксируются данные всех, кто попал в радиус действия прибора. Вспышка при фиксации не видна, результат — два фото: спереди и сзади. На фото получается отчетливое изображение номера транспортного средства и лица водителя.

Физика процесса: эффект Доплера, или «умное эхо»

Как и любое направление развития науки и техники, радиолокация базируется на некоторых физических основах, позволяющих обеспечивать решение стоящих перед ней задач, а именно: обнаруживать различного рода объекты и определять координаты и параметры их движения с помощью радиоволн.

Использование радиоволн, или, другими словами, электромагнитных колебаний (ЭМК), частотный диапазон которых сосредоточен в пределах от 3 кГц до 300 ГГц, определяет основные преимущества радиолокационных систем (РЛС) перед другими системами локации (оптическими, инфракрасными, ультразвуковыми). В первую очередь, это обусловлено тем, что закономерности распространения радиоволн в однородной среде достаточно стабильны как в любое время суток, так и в любое время года и, следовательно, изменение условий оптической видимости, обусловленных появлением дождя, снега, тумана или изменением времени суток, не нарушает работоспособность РЛС.

Основными закономерностями распространения радиоволн, которые позволяют обнаруживать объекты и измерять координаты и параметры их движения, являются следующие:

– постоянство скорости и прямолинейность распространения радиоволн в однородной среде (при проведении инженерных расчетов скорость распространения радиоволн принимают равной 3·10–8 м/с;

– способность радиоволн отражаться от различных областей пространства, электрические или магнитные параметры которых отличаются от аналогичных параметров среды распространения;

– изменение частоты принимаемого сигнала по отношению к частоте излученного сигнала при относительном движении источника излучения и приемника радиолокационного сигнала.

Последнее свойство радиоволн в радиолокации называют эффектом Доплера по имени австрийского ученого Кристиана Андреаса Доплера, который в 1842 году теоретически обосновал зависимость частоты колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волны и наблюдателя относительно друг друга.

Доплеровский метеорологический радиолокатор

В 1848 году эффект Доплера был уточнен французским физиком Арманом Физо, а в 1900 году – экспериментально проверен русским ученым Аристархом Белопольским на лабораторной установке. В этой связи в научно-технической литературе наименование данного эффекта можно встретить под названием «эффект Доплера – Белопольского».

Для проведения процедуры измерения расстояния до цели РЛС излучает в ее направлении зондирующий сигнал. Данный сигнал доходит до объекта, отражается от него и возвращается обратно к РЛС. Поскольку, как отмечалось ранее, скорость распространения радиосигнала в однородной среде постоянная, то для определения дальности до объекта необходимо зафиксировать момент излучения зондирующего сигнала t и момент приема отраженного сигнала от цели t1. В результате разность (t1 – t) позволяет определить время, в течение которого радиоволна проходит путь от РЛС к цели и обратно, которое равно 2Д, где Д – дальность до объекта (расстояние между РЛС и целью). Разность времен (t1 – t) в радиолокации называют временем запаздывания и обозначают как tд. В результате при известной величине tд можно составить равенство 2Д = Сtд, из которого следует, что дальность до объекта (цели) равна Д = Сtд/2.

Таким образом, подводя итог процедуре измерения дальности до цели, можно констатировать, что для измерения с помощью РЛС расстояния до цели необходимо определить время запаздывания tд, которое при известной скорости распространения радиоволн позволяет определить дальность до нее.

Большой процент объектов радиолокационного наблюдения составляют подвижные или движущиеся цели. К таким целям, например, относятся самолеты, вертолеты, автомобили, люди и т.д. Основным отличительным признаком таких объектов является скорость их движения. Выявить эффект движения цели, как отмечалось ранее, можно, опираясь на эффект Доплера, который позволяет определить радиальную скорость движения цели. То есть частота принимаемых РЛС колебаний от цели, двигающейся ей навстречу, возрастает по сравнению со случаем неподвижной цели и уменьшается при удалении цели от РЛС. Данное изменение частоты принимаемого сигнала называют доплеровским смещением частоты. Величина данного смещения зависит от скорости взаимного движения носителя РЛС и цели. Необходимо заметить, что рассмотренные свойства радиоволн будут проявляться вне зависимости от условий оптической видимости в зоне радиолокационного наблюдения.

Покрытие Флайтрадар 24 — что может отслеживать?

Широкое покрытие Флайтрадара обеспечивает сервису успешную работу на территории всей Европы и Соединенных Штатов Америки. Функционал трекера по достоинству оценили клиенты из Украины, России, Канады, Мексики, Латинской Америки, Южной Африки, а в странах Азии он вообще занимает лидирующие позиции среди аналогичных сервисов.

Флайтрадар24 покрывает практически все страны мира, отслеживая 960 авиакомпаний и 32505 самолетов. Также сервис предоставляет подробную информацию о работе 8675 аэропортов, находящихся в 190 странах. Флайтрадар мониторит их состояние, погодные условия в регионе, ведет учет количества вылетевших и прибывших самолетов. Те аэропорты, которые находятся под контролем радара, отмечены, синим цветом.

Качество покрытия обусловлено не только количеством установленных ADS-B-приемников, но их техническими характеристиками и расположением антенн. Одна наземная станция способна принимать сигнал воздушных суден в радиусе от 200 до 400 км.

Причины поломки антирадара

Если радар-детектор не включается, это понятно водителю – сгорел блок питания или предохранитель. Точную причину установят в специализированном автосервисе. Неявные неисправности более опасны, могут привести к штрафу. Автолюбители зачастую понимают, что перестал работать радар детектор только после остановки инспектором ГИБДД. Так случается при отказе громкоговорителя, перегорании светодиодов светового предупреждения. Встроенные устройства не функционируют при неисправностях модуля GPS, отказах дисплея, отсутствии обновления базы данных.

Основными причинами, почему не работает антирадар, становятся:

  • перегревы блоков питания или печатных схем (при размещении прибора на солнце);
  • резкие перепады бортового питания (при работе от прикуривателя);
  • сильные вибрации, удары, падения прибора;
  • заводские дефекты сборки или пайки схем;
  • сильная влажность (попадание на антирадар воды).

Самостоятельно ремонтировать радар-детектор могут только опытные радиолюбители или электронщики. Рядовому автолюбителю гораздо проще обратиться в специализированный сервис.

Классификация полицейских радаров

На сегодняшний день практикуется использование двух видов радаров — это радиочастотный и лазер. Суть работы у них схож, только лазерный работает при помощи импульсов, которые таким же образом идут от радара к объекту и обратно. Суть их работы не меняется, как и точность расчетов, поэтому здесь особой разницы ты не увидишь. 

Сейчас мы подробнее рассмотрим существующие радары, выделяя их преимущества и недостатки:

Бинар — самая популярная радиочастотная модель. С помощью двух видеокамер фиксируется и общее положение на дороге и отдельно нарушитель ПДД. Можно применять стационарно или в движении, зарядка производится от сети, а также имеется возможность синхронизации с компьютером. Управление с помощью пульта или сенсорного экрана;
Искра — вариант для неблагоприятных погодных условий в своем лучшем виде. Пользуется спросом у патрульных служб уже более 15 лет, так как умеет быстро и точно выдавать информацию об объекте. За счет многоимпульсной системы его сложно уловить антирадарам, может быть как стационарный так и мобильный;
Радис — новый измеритель скорости с возможностью выбора объекта, самого быстрого, к примеру, или самого близкого. Очень легкая модель, может измерять скорость в двух направлениях. Магнитная подставка хорошо закрепляет его на любой поверхности, поэтому удобно устанавливать его на патрульную машину, в любом положении;
Визир — стационарный радар с возможностью фиксации любого вида нарушений. На фото будет дата и время, так что избежать наказания не получится;
Амата — лазерный высокоточный и быстрый замер скорости. Выделяет из потока нарушителя и производит фото/видео фиксацию;
Арена — крепится исключительно на треногу, будь с ним аккуратнее, ведь прибор сразу отправляет данные о нем в ГИБДД. Работает от внешнего аккумулятора, не мобилен, но достаточно точный в своих показаниях; 
Стрелка — улавливает скорость автомобиля даже с большого расстояния, до 500 метров, что другим не под силу

Также с легкостью охватывает до 4 полос, при этом не важно направление автомобилей;
Крис — умеет не только видеть и распознавать нарушителей, но и передавать информацию по ним в региональные отделения ГИБДД. Инфракрасный лазер позволяет делать замеры даже в темное время суток.

Как видно, каждый радар имеет свою особенность. Территориально определяется каким из них пользоваться удобнее. 

Виды радар-детекторов

По строению корпуса эти приборы делят на моноблочные, разнесенные и встраиваемые. У первых все располагается в одном корпусе. Их обычно размещают на лобовом стекле или на передней панели. Вторые состоят из двух частей: собственно из радар-детектора и панели управления им. Из-за такого строения базовую часть можно припрятать в скрытое от глаз место, а на виду оставить только компактный блок управления. Встраиваемые детекторы входят в состав гибридных устройств, например работают в паре с видеорегистратором. Хотя такой прибор хорош многофункциональностью, нередко качество соседствующих устройств хуже, чем у работающих по отдельности.

По типу питания радар-детекторы делят на проводные и беспроводные. Первые запитываются от бортовой сети автомобиля с помощью кабеля. Вторые работают от обычных батареек или аккумуляторов. Аккумуляторы могут заряжаться от бытовой или автомобильной сети.

По способу обработки сигнала радар-детекторы делят на детекторные, прямого усиления, прямого преобразования и супергетеродины. Детекторный прибор самый простой и работает с принятым сигналом без его обработки. В устройствах прямого усиления сигнал усиливается и только после этого детектируется. В детекторах прямого преобразования на полученный сигнал накладывается сигнал своего генератора (гетеродина). Остается разностная частота, которая затем усиливается и детектируется. А в супергетеродинах происходит несколько преобразований частот, после чего сигнал усиливается и обрабатывается. Именно последние радар-детекторы считаются наиболее чувствительными и совершенными. Заметим, что радар-детекторы гетеродинного и супергетеродинного типа уже относятся к приборам с активным взаимодействием. И потому они нуждаются в защите от обнаружения (об этом ниже).

История изобретения

Зенитный радиоискатель Б-2 «Буря», СССР 1935 год.

Эффект отражения радиоволн был открыт в 1886 году немецким физиком Генрихом Герцем (нем. Heinrich Rudolf Hertz). В 1897 году, работая со своим радиопередатчиком, Александр Попов обнаружил, что радиоволны отражаются от металлических частей кораблей.
Патенты на изобретение устройств радиообнаружения были выданы в 1905 году в Германии, в 1922 в США, в 1934 году — в Великобритании.
В 1934 году в СССР был успешно проведен эксперимент по обнаружению самолета с помощью эффекта отражения радиоволн – самолет, летящий на высоте 150 метров, был обнаружен на дальности 600 метров от установки. В том же году на Ленинградском радиозаводе были выпущены опытные образцы РЛС «Вега» и «Конус» для системы радиообнаружения самолетов «Электровизор». В СССР в то время термин «радар» не применялся, первые РЛС назывались радиоулавливателями или радиоискателями. На вооружение в СССР РЛС были приняты в 1939 году.
Наибольших успехов до начала Второй мировой войны в радиолокации добились англичане, которые начали массово устанавливать РЛС на военные корабли, а в 1937 году создали сеть радиолокационного обнаружения Chain Home вдоль побережья Ла-Манша и восточного побережья Англии, состоявшую из 20 станций, способных обнаружить самолет на дистанции до 350 км.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector