Атомная электростанция, ее устройство, принцип работы

Парогенератор

Вернемся к процессу преобразования ядерной энергии в электричество. Для производства водяного пара на АЭС применяются парогенераторы. Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины.

Применяются парогенераторы на двух- и трехконтурных АЭС. На одноконтурных их роль играет сам ядерный реактор. Это так называемые кипящие реакторы, в них пар генерируется непосредственно в активной зоне, после чего направляется в турбину. В схеме таких АЭС нет парогенератора. Пример электростанции с такими реакторами – японская АЭС «Фукусима-1».

Вода первого контура, циркулирующая через активную зону реактора, омывает тепловыделяющие элементы, нагреваясь при этом до температуры 320–330° С. Но поскольку вода в обычном состоянии при давлении в 1 атмосферу закипает уже при температуре 100°С, то для того чтобы повысить температуру кипения, повышают и давление в первом контуре теплоносителя. В современных реакторах типа ВВЭР (водо-водяной энергетический реактор – они являются основой мировой атомной энергетики) давление в первом контуре достигает 160 атмосфер.

Дальше эта очень горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура. Это контур так называемого рабочего тела, т. е. среды, совершающей работу, преобразуя тепловую энергию в механическую. Эта вода, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому она закипает. Образовавшийся водяной пар под высоким давлением поступает на лопатки турбины.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых, его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых, использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Будущее ядерной энергетики?

Торий — сейчас об этом металле как о ядерном топливе будущего, не говорит только ленивый. Оптимизму нет конца, и он подогревается вполне реальными достижениями. В 2021 году в пустыне Гоби китайские ученые построили тестовый вариант жидкосолевого ядерного реактора, топливной основой для которого послужил торий, а не уран. В планах соорудить на его основе коммерческий вариант, а потом начать строительство новых реакторов в разных странах в рамках программы «Один пояс, один путь».

Преимущества ториевого реактора потенциально должны понравиться любому человеку, озабоченному проблемами радиационной безопасности. Расплавы тория не требуют жидкого охлаждения — только воздушное. Они быстро затвердевают на воздухе, поэтому радиоактивные утечки исключены. Так что ториевые АЭС можно строить в пустынных местностях, подальше от крупных городов.

Но на этом их преимущества, как свидетельствуют многочисленные газетные заметки, не исчерпываются. Аварии по типу Чернобыльской с такими реакторами фактически не возможны. Радиоактивные отходы ториевого реакторы в массе своей имеют период полураспада в районе 500 лет, а нередко и 100 лет, что удобно в плане захоронения. 

К тому же, тория в природе как минимум в три раза больше, чем урана. То есть, у нас огромные залежи безопасного топлива, которые только и ждут, когда их пустят на выработку энергии. Но как это часто и бывает, у такого замечательного решения есть свои темные стороны.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов: Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство. Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.

  1. PWR (pressurized water reactors) — водо-водяной реактор (реактор с водой под давлением). В странах СНГ такие реакторы называют аббревиатурой ВВЭР. В качестве теплоносителя и замедлителя в них используется обычная вода. Водо-водяные реакторы самые распространенные в мире (около 62% от всех реакторов). Водо-водяные реакторы дешевы и удобны, т.к. вода не воспламеняется, не затвердевает, и ее использование относительно безопасно.
  2. BWR (boiling water reactor) — кипящий реактор или кипящий водо-водяной реактор. Принцип действия АЭС на таком реакторе очень похож на то, как работает АЭС на ВВЭР. Кипящий реактор также использует обычную воду, его особенность в только том, что пар генерируется сразу в активной зоне. В водо-водяном реакторе сначала нагревается вода, которая позже, спустя несколько этапов, переводится в пар, в кипящих реакторах тепло сразу отдается кипящей воде, которая мгновенно становится горячим паром.Кипящие реакторы достаточно распространены, их 20% от всех атомных реакторов мира.
  3. LWGR (light water graphite reactor) — графито-водный реактор, ГВР, ВРГ или уран-графитовый реактор. В качестве замедлителя в таком типе реактора используется графит, в качестве теплоносителя – обычная вода. Схема работы АЭС, запущенной впервые в мире, основывалась на графито-водном реакторе. Сегодня такие реакторы используют редко, большинство из них расположены в России.
  4. PHWR (pressurised heavy water reactor) — тяжеловодный реактор. В таких реакторах в качестве теплоносителя и замедлителя используется тяжелая вода (D2O), по-другому ее называют тяжеловодородной водой или оксидом дейтерия.

С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Мифы ториевой энергетики

Начнем с самого простого. Торий — это ядерный яд. То есть, сам по себе он не способен запустить цепную реакцию — торию в реакторе нужен инициирующий элемент. Таким может послужить только уран, в первую очередь изотоп уран-235, или плутоний-239.

Таким образом, уже в рамках проектирования реактора понадобятся урановые сборки. Отказаться от обогащения урана и его добычи не получится. Однако его количество будет в 3-10 раз меньше, чем для традиционных АЭС. А это означает, что нынешний уровень потребления урана — более 65 килотонн ежегодно, можно резко сократить.

Второй важный момент — проблема с повторным использованием отработанного ядерного топлива, которого накопилось очень много. Ториевому реактору просто не нужно такое количество урана и плутония. Так что получается палка о двух концах: да, мы снизим потребление урана и плутония, но от их переработки и захоронения ядерных отходов мы не сможем отказаться. Это отдельная проблема, которая не решается в рамках нового направления ядерной энергетики.

Третий фактор связан с запасами тория. Дело в том, что торий добывают из монацита, минерала, содержание фосфата тория в котором составляет  6-7%. Монацит содержится в магматических и других породах, но самые высокие его концентрации находятся в россыпных отложениях, сконцентрированных с другими тяжелыми минералами. То есть без коммерческого извлечения редкоземельных элементов производство тория сейчас нерентабельно. Экономически выгоднее добывать уран. Так что ториевые реакторы не имеют никаких экономических преимуществ перед традиционной АЭС. Единственная страна, в которой этот фактор не работает — Индия. В стране большие запасы тория, перевод местных АЭС на торий может оказаться прибыльным. Тем более, что Индия испытывает настоящий энергетический голод. И по мере превращения страны из аграрной в урбанистическую, энергии будет нужно всё больше. Но «Усовершенствованный тяжеловодный реактор» (AHWR) индийского производства, работающий на торий-урановых и торий-плутониевых сборках, до сих пор не закончен.

Проблема еще и в том, что ториевый реактор — это сильно корродирующая среда. Помимо этого, в результате реакции в нем образуется изотоп уран-232. Его продукты распада, висмут-212 и таллий-208, характеризуются жестким гамма-излучением, которое сложно экранировать. Поэтому уровень безопасности и защищенности персонала и электроники для ториевых реакторов по идее должен быть выше, чем на традиционной АЭС.

Однако, проверить эти теоретические выкладки можно только на действующих ториевых реакторах разных моделей. А их пока не так много. Вся надежда на китайскую установку и на то, что данные по ее эксплуатации не будут засекречены.

Россия тоже старается не отстать от ториевого клуба. В ближайшие 15-20 лет запланировано использование тория в уже существующих реакторах типа ВВЭР и БН. А после, в проектируемых реакторах Супер-ВВЭР, в котором значительная часть отработанного ядерного топлива будет использована для производства нового. 

Остается вопрос с отходами ториевых реакторов. Согласно исследованию Минэнерго США за 2014 год, отходы торий-уранового цикла имеют такую же радиоактивность на отрезке времени в 100 лет, что и уран-плутониевые топливные циклы, и более высокую радиоактивность отходов на отрезке 100000 лет. К тому же, если мы знаем как работать с отходами уран-плутониевых циклов, то опыта работы с отходами ториевых реакторов у нас нет.

При всем положительном отношении автора этих строк к новым технологиям в области атомной энергетики, чтобы сказать, что торий — светлое будущее этой области понадобится еще как минимум лет 10. А сейчас здесь больше мифов, маркетинга и попыток найти инвесторов для проектов, которые вовсе не обязательно будут экономически и экологически более выгодными, чем повышение безопасности и технологичности уже использующихся атомных технологий.

Что еще есть на АЭС?

После удаления из реактора в твэлах с отработанным ядерным топливом все еще продолжаются процессы деления. В течение длительного периода времени они продолжают оставаться мощным источником нейтронов и выделяют тепло. Поэтому в течение некоторого времени твэлы выдерживают под водой в специальных бассейнах, которые находятся тут же, на атомной электростанции. Если их не охлаждать, они просто могут расплавиться.

После того как их радиоактивность и температура снизятся до значений, позволяющих их перевозить, а для водо-водяных реакторов это три года, твэлы извлекают, помещают в толстостенную стальную тару и отправляют в «сухие хранилища».

Кроме того, если посмотреть на атомную электростанцию со стороны, то ее силуэт, как правило, определяют высокие сооружения башенного типа. Это градирни. Они нужны в случае если невозможно использовать воду для конденсации пара из водохранилища. Тогда на станции применяют оборотные системы охлаждения, ключевым элементом которых являются охладительные башни. Внутри градирен горячая вода распыляется, падая с высоты как в обычном душе. Часть воды при этом испаряется, что и обеспечивает требуемое охлаждение. Благодаря своим внушительным размерам, а некоторые из них достигают высоты 60-этажного дома (например, градирня энергоблока №6 Нововоронежской АЭС), градирни обычно являются самой заметной частью атомной электростанции.

Кроме того, каждая атомная станция имеет еще одну или несколько высоких труб, внешне похожих на дымовые трубы обычных тепловых электростанций. Но дым из них не идет – это вентиляционные трубы, через них выводятся газоаэрозольные выбросы – радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и летучие соединения радиоактивного иода. Но по большей части это радиоактивные изотопы инертных газов – аргон-41, криптон-87 и ксенон-133. Они представляют собой короткоживущие радионуклиды и без ущерба для экологии распадаются за несколько дней или даже часов.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности. Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

Первый барьер – прочность урановых таблеток

Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления

Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
Третий барьер – прочный стальной корпус реактора, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Фукусима

Это еще один пример глобальной катастрофы с участием атомной электростанции. И в данном случае также причиной стала цепь случайностей. Станция была надежно защищена от землетрясений и цунами, которые не редкость на Японском побережье. Мало кто мог предположить, что оба эти события произойдут одновременно. Принцип работы генератора АЭС «Фукусима» предполагал использование внешних источников энергии для поддержания в работоспособности всего комплекса безопасности. Это разумная мера, так как получить энергию от самой станции в процессе аварии было бы затруднительно. Из-за землетрясения и цунами все эти источники вышли из строя, из-за чего реакторы расплавились и произошла катастрофа. Сейчас проводятся меры по устранению ущерба. По оценкам специалистов, на это уйдет еще около 40 лет.

Колебания генеральной линии

Напомним, что Макрон не всегда был сторонником атомной энергетики — скорее французский лидер колеблется в зависимости от развития ситуации. В ноябре 2018 года он подтвердил закрытие двух реакторов на АЭС в Фессенхайме, выполнив тем самым обещание, данное французским экологам его предшественником, социалистом Франсуа Олландом. Администрация Макрона охарактеризовала это решение как «ключевое подтверждение приверженности Франции сокращению доли атома в производстве энергии на 50%». Нынешний хозяин Елисейского дворца также пообещал закрыть в будущем еще 12 реакторов, хотя уже тогда, объясняя свою стратегию, он предупреждал: «Снижение роли ядерной энергетики не означает отказ от нее».

Слова Макрона подтверждаются и экономическими реалиями: в секторе атомной энергетики занято более 3 тыс. компаний и 220 тыс. пар рабочих рук в стране. Менее чем за пять месяцев до выборов, на фоне разыгравшегося в Европе энергетического кризиса, программа спасения страны путем отказа от закрытия АЭС уже выглядит весомой заявкой на второй срок Макрона в президентском кресле.

Уважаемый реактор

Атомная электростанция «Фессенхайм» на берегу Рейна

Фото: Global Look Press/imago stock&people

Активно развивать собственную ядерную энергетику Франция начала после нефтяного кризиса 1973 года, когда члены Организации арабских стран — экспортеров нефти (ОПЕК) решили перекрыть топливный кран для правительств, которые поддерживали Израиль во время «войны Судного дня». В одночасье цена на сырую нефть выросла в четыре раза для Франции, практически лишенной природных энергоресурсов и использовавшей для выработки электроэнергии мазутные ТЭС. В этом контексте ядерная энергия была едва ли не единственным путем к энергетической независимости Франции. В последующие годы в стране были построены десятки атомных электростанций под управлением государственной (до 2004 года) компании Electricité de France (EDF), крупнейшего производителя и дистрибутора электроэнергии в Европе. «EDF была создана после Второй мировой войны и явилась символом действий государства по восстановлению экономики Франции, разрушенной нацистскими бомбами», — говорит Томас Пеллерин-Карлен, директор Энергетического центра Института Жака Делора.

Связанный с ядерной энергией символизм стал пунктиком для многих французских политиков, особенно для ностальгирующих по былому величию, — Марин Ле Пен или Эрика Земмура. В ответ на предложенный руководством Евросоюза зеленый переход, предполагающий отказ от АЭС, Ле Пен и Земмур сделали ядерную энергетику главным приоритетом в своей повестке, что, в свою очередь, мобилизовало французское общественное мнение. Согласно исследованию Odoxa (Независимый институт изучения общественного мнения и СМИ), за последние два года поддержка французами атомной энергетики увеличилась на 17 пунктов.

А недавний энергетический кризис в Европе, с которым Франция справилась лучше своих соседей именно благодаря АЭС, стал идеальным катализатором для окончательного выбора действующим президентом атомной темы в качестве одной из главных составляющих своей предвыборной программы.

Нововоронежская АЭС. Сухопутная колыбель ВВЭР

Нововоронежская АЭС — вид с пруда-охладителя ночью

Как и Белоярская АЭС, это одна из старейших АЭС страны. Первый ее энергоблок заработал в том  же 1964 году, всего через полгода после пуска АМБ-1. Но в отличии Белоярской АЭС, где отрабатывали технологию канальных уран-графитовых реакторов с ядерным перегревом пара, а затем технологии быстрых реакторов, в Нововоронеже занимались и занимаются освоением другого направления – водо-водяных реакторов. Здесь были построены все первые, головные блоки энергетических реакторов ВВЭР мощностью от 210 МВт, 440, 1000 и сейчас 1200. Всего на этой АЭС построено 7 энергоблоков – максимальное количество на российских АЭС.

Первый в мире энергоблок с ВВЭР-1000 на Нововоронежской АЭС

В настоящее время из них работают 4. Это один ВВЭР-440, один ВВЭР-1000 и два первых в нашей стране и мире ВВЭР-1200. Получается, что каждый из этих реакторов – самый первый в своем роде. В том числе и нынешний флагманский продукт отечественной атомной промышленности – энергоблок с реактором ВВЭР-1200, которые активно приходят на замену старых блоков на АЭС в России и строится для зарубежных заказчиков. В России их уже построено 4, и в разной стадии строительства за рубежом еще более 10 штук. 

Первые в мире и нашей стране два ВВЭР-1200 на Нововоронежской АЭС

Подробно про водо-водяные реакторы я рассказывал в прошлой статье про Кольскую АЭС. Коротко повторю, что эти реакторы отличаются от канальных графитовых тем что в них нет ни графитовой кладки, ни каналов. Это более компактные реакторы, топливо которых находится внутри прочного толстостенного металлического корпуса. Водо-водяной в названии реактора означает, что вода выступает в нем и замедлителем нейтронов и теплоносителем, который отводит тепло от ядерного топлива. Это реакторы, работающие по двухконтурной схеме, т.е. вода в самом реакторе и первом контуре нагревается до большой температуры – более 300 градусов, но не кипит, т.к. находится при этом под давлением более 150 атмосфер (для чего мощный корпус и нужен). Тепло через теплообменник передается второму контуру, где уже вода кипит, пар идет на турбину, ну и дальше обычная схема. КПД таких установок около 32% и выше.

Такой же тип водо-водяных реакторов используется и на атомных подводных лодках в силу ряда преимуществ, в первую очередь более компактных размеров. Собственно, изначально он для них и разрабатывался, но потом вышел на сушу и прочно обосновался в мирной атомной энергетике.  Сейчас это самый популярный тип реактора в мире. Более чем на 80% энергоблоках АЭС в мире работают водо-водяные реакторы под давлением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector