Ионный двигатель с сеткой

[править] Принцип действия

Испытания ионного двигателя на ксеноне

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 на внешней). В результате попадания ионов между сетками они разгоняются и выбрасываются в пространство, ускоряя корабль согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

  • чтобы корпус корабля оставался нейтрально заряженным;
  • чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю.

Чтобы ионный двигатель работал — нужны всего 2 вещи: газ и электричество.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и как следствие конечной скорости космического аппарата.

Плазменный двигатель

Плазменный двигатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена российским ученым физиком Алексеем Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме.

Плазменный ракетный двигатель

Принцип работы заключается в следующем. Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами.

Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.

Возможно ли совместить эти две технологии и получить ионно-плазменный двигатель, способный поднять хотя бы 1 т в космос, преодолев земное притяжение и достигнуть те скоростные и временные характеристики преодолевая космическое пространство, как утверждает Виктор Попов, посмотрим. Пока мы видим только картинки и слышим слова.

Культура

Впервые ионный двигатель появился в фантастике в 1910 году — в романе Дональда В. Хорнера «Аэроплан к солнцу: приключения авиатора и его друзей». Ионный двигатель широко представлен в фантастической литературе, компьютерных играх и кинематографе (так, в «Звёздных войнах» экономичный ионный двигатель развивает скорость до трети световой и используется для перемещения в обычном пространстве на небольшие по космическим меркам расстояния — например, в пределах планетарной системы), но для практической космонавтики стал доступен только во второй половине XX века. Реальный ионный двигатель по своим техническим характеристикам (и в первую очередь по силе тяги) значительно уступает своим литературным прообразам (так, Эдгард Чуэйри образно сравнивает ионный двигатель с автомобилем, которому нужно двое суток для разгона с 0 до 100 км/ч).

Как работает ионный двигатель

Принцип работы ионного двигателя простой и сложный одновременно. Он заключается в ионизации газа, который разгоняется электростатическим полем для получения реактивной тяги и разгона космического корабля согласно третьему закону Ньютона.

Топливом или рабочим телом такого двигателя является ионизированный инертный газ (гелий, аргон, неон, ксенон, криптон, радон). Впрочем, не все инертные газы стоит использовать в качестве топлива, поэтому, как правило, выбор ученых и исследователей падает на ксенон. Также рассматривается вариант использования ртути в качестве рабочего тела ионного двигателя

Во время работы двигателя в камере образуется смесь из отрицательных электронов и положительных ионов. Так как электроны являются побочным продуктом, их надо удалять. Для этого в камеру вводится трубка с катодными сетками для того, чтобы она притягивала к себе электроны.

Положительные ионы, наоборот, притягиваются к системе извлечения. После чего разгоняются между сетками, разница электростатических потенциалов которых составляет примерно 1 200 Вольт, и выбрасываются в виде реактивной струи в пространство.

Схематичное изображение работы ионного двигателя.

Электроны, которые попали в катодную ловушку, должны быть удалены с борта космического аппарата, чтобы он сохранял нейтральный заряд, а выброшенные ионы не притягивались обратно, снижая эффективность установки. Выброс электронов осуществляется через отдельное сопло под небольшим углом к струе ионов

Таким образом, что произойдет в их взаимодействии после покидания двигателя, уже не так важно, ведь они не мешают движению корабля

Когда изобрели ионный двигатель

При всей перспективности ионного двигателя, первый раз его концепцию предложил еще в 1917 году Роберт Годдард. Только спустя почти 40 лет Эрнст Штулингер сопроводил концепцию необходимыми расчетами.

Роберт Годдард.

В 1957 году вышла статья Алексея Морозова под названием ”Об ускорении плазмы магнитным полем”, в которой он описал все максимально подробно. Это и дало толчок к развитию технологии и уже в 1964 году на советском аппарате ”Зонд-2” стоял такой двигатель для маневров на орбите.

Первый аппарат в космосе с ионным двигателем.

По сути, ионный двигатель является первым электрическим космическим двигателем, но его надо было дорабатывать и совершенствовать. Этим и занимались долгие годы, а в 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе. Показанный тогда малый КПД и низкая тяга надолго отбили желание американской космической промышленности пользоваться такими двигателями.

В СССР разработки продолжались и после этого времени. И европейское, и американское космические агентства вернулись к этой идее. Сейчас исследования продолжаются, а выведенные на орбиту образцы двигателей, хоть и не могут быть главным тяговым элементом управления, но зато проходят ”проверку боем”. Собранная информация позволит увеличить мощность ионного двигателя. По разной информации, так удалось увеличить тягу самого мощного подобного двигателя более чем до 5 Н. Если это так, то все действительно не зря.

Как работает ионный двигатель

Принцип работы ионного двигателя

Такой двигатель является реактивным так же как и знакомый ракетный двигатель, только вместо сжигания топлива используется ионизация газа. А в остальном принцип тот же, принцип реактивного движения основанный на Третьем законе Ньютона. А если по-простому, то аппарат двигает вперед поток ионов выбрасываемых из двигателя.

А теперь подробнее о принципе работы ионного двигателя. В «камеру сгорания» подается инертный газ (обычно аргон или ксенон), при помощи потока электронов этот газ ионизируется. Далее электроны улавливаются специальными устройствами, а положительно заряженные ионы двигаются к решеткам с очень большой разницей потенциалов. Из-за разницы потенциалов ионы разгоняются и выбрасываются из сопла создавая реактивную тягу.

Ранее пойманные электроны (отрицательно заряженные, если вы уже забыли) выбрасываются в вдогонку и под углом к потоку ионов, чтобы нейтрализовать их заряд, иначе часть ионов могут притянутся к корпусу двигателя уменьшив его тягу. Принцип работы ионного двигателя на самом деле прост, но всегда есть какое-то «но»…

Достоинства и недостатки

Все довольно просто, но есть некоторые недостатки.

Ионный двигатель создает очень большой удельный импульс но очень маленькую тягу обусловленную массой выбрасываемых частиц. Это значит, что разогнать космический корабль он может, но ускорение будет небольшим и на его создание уйдет очень много времени.

Поэтому сейчас такие двигатели используются только в космосе, где нет сопротивления воздуха и на небольших объектах вроде спутников, либо для пространственной ориентации более крупных объектов.

Ионный двигатель в работе

Но в марте 2015 года на орбиту был запущен космолет X-37B, который должен испытать ионный двигатель на эффекте Холла. Такой двигатель работает по тому же принципу, что и обычный, за исключением того, что ускорение происходит благодаря эффекту Холла, что позволяет несколько увеличить его тягу и не использовать решетки для притяжения и разгона ионов.

В 2003 двигатель на эффекте Холла был впервые использован в качестве основного на автоматической станции SMART-1 весом в 370 кг европейского космического агенства, но сам двигатель был создан в московском КБ «Факел». Теперь ионный двигатель ждет испытание на намного более массивном X-37.

Главным достоинством ионного двигателя является время его работы. Такой двигатель может работать очень долго благодаря низкому потреблению газа и все время своей работы он будет разгонять космический аппарат. Например, двигатель NEXT (NASA’s Evolutionary Xenon Thruster) проработал в космосе рекордное время — 5,5 лет или 48 000 часов, использовав всего 870 кг ксенона, в случае стандартного химического двигателя потребовалось бы 10 тонн топлива.

Рекорд по скорости также принадлежит ионному двигателю. Аппарат Dawn запущенный Nasa для исследования карликовой планеты Цереры, разогнался до скорости 11,46 км/с без использования гравитационных маневров.

Судя по всему, именно у ионных двигателей наибольшие перспективы стать в будущем маршевыми двигателями для межпланетных полетов.

Где использовались

1 миссия стартовала в 1998 году. НАСА запустило космический аппарат «Deep Space 1», на борту которого испытывалось 12 новых экспериментальных технологий. Например, электроника с низким энергопотреблением, солнечные концентраторы, различные научные приборы и солнечная электрическая двигательная установка. Ионные двигатели аппарата работали в течение огромного количества времени позволив получить информацию о нескольких астероидах, кометах и даже долететь до Марса.

Космический аппарат «Deep Space 1»

После успеха миссии, НАСА предоставило новый аппарат «Dawn» с тремя дополнительными ионными двигателями. Это позволило космическому аппарату выйти на орбиту астероида Веста, произвести наблюдения, свернуть с орбиты и отправится к карликовой планете Церера. При этом топлива в баке аппарата хватит, чтобы посетить еще несколько космических объектов.

Космический аппарат «Dawn»

Ионные двигатели использовались для переноса космического аппарата Европейского Космического Агентства «Smart 1» с околоземной орбиты на лунную, а также на японском космическом аппарате «Хаябуса». Этот тип двигателей испытывался на Земле, и успешно выдержал более 5 лет непрерывной работы.

Недостатки ионных двигателей

Возможность продолжительной работы ионного двигателя очень важна, так как он не способен развивать высокую тягу и моментально разгонять корабль до больших скоростей. В нынешних реализациях тяга ионных двигателей с трудом достигает 100 миллиньютонов.

Из-за такой конструктивной особенности, как минимум пока, такой двигатель не дает возможности стартовать с другой планеты, даже если у нее очень маленькая гравитация.

Получается, что использование таких двигателей для дальних путешествий пока невозможно без традиционных тяговых установок на химическом топливе. Зато, их совместное использование позволит гораздо более гибко пользоваться ускорением. Например, за счет обычного двигателя разгонять аппарат до более менее высокой скорости, а потом ускоряться еще больше за счет ионного двигателя.

Покорение дальнего космоса без новых технологий невозможно.

По сути, малая тяга на данный момент является главным недостатком таких двигателей, но ученые работают в этом направлении и в перспективе повысят его мощность, так как определенного прогресса удалось добиться уже сейчас.

Еще одной, пусть и не такой существенной, проблемой является надежность. В целом ионные двигатели достаточно надежны, но надо понимать, что их задача заключается в том, чтобы унести аппарат очень далеко и очень быстро. То есть работать он должен долго, чтобы не ставить под удар всю миссию. Поэтому, пока идут работы над увеличением мощности, разработчики стараются не забывать и о надежности.

Возможности и приложения

По самому своему принципу ионизации порохового газа эти двигатели работают только в вакууме (космос или испытательная камера).

Их низкая тяга, всего несколько десятых долей ньютона , эквивалентная дыханию человека рукой на расстоянии 20  см , ограничивает их использование в орбитальных полетах или, в более общем смысле, в областях со слабыми гравитационными полями.

Эти типы двигателей имеют большие удельные импульсы  : от 5000 до 25000 с .

Двигатели этого типа хорошо подходят для автоматических исследовательских миссий (зонд) и сначала очень серьезно рассматриваются для удаленных пилотируемых миссий, таких как Марс .

Выходной ионный ток — важный параметр в этом типе двигателя. Его можно рассчитать в первом приближении как сумму (интеграл на поверхности) нагрузок, пересекающих выходную плоскость, на среднюю скорость нагрузок. Тяга двигателя может быть легко рассчитана по выходному ионному току.

Внешние ссылки [ править ]

vтеДвижение космического корабля
Концепции
  • Ракета
  • Ракетный двигатель

    • Двигатель реакции
    • Реакционная масса
  • Толкать

    • Удельный импульс
    • Дельта-v
  • Постановка
  • Ракетное уравнение
  • Тепловая ракета
Физическая тяга
  • Двигатель на холодном газе
  • Водная ракета
  • Паровая ракета
  • Солнечный парус

    • Электрический парус
    • Магнитный парус
  • Солнечная тепловая ракета
  • Фотонная ракета
  • ВИНО
Химическая тяга
Состояние
  • Жидкостная ракета
  • Ракета на твердом топливе
  • Гибридно-метательная ракета
Пропелленты
  • Жидкое топливо

    • Криогенный
    • Гиперголический
  • Монотопливо
  • Двухкомпонентное топливо
  • Триппеллент
Циклы питания
  • Поэтапный цикл горения
  • Цикл экспандера
  • Газогенераторный цикл
  • Отводной цикл
Приемные механизмы
  • Двигатель с питанием от давления
  • Двигатель с насосным питанием
  • Двигатель с электронасосным питанием
Электродвигатель
Электростатический
  • Коллоидный двигатель
  • Ионный двигатель

    • Подруливающее устройство на эффекте Холла
    • Автоэмиссионная электрическая силовая установка
Электромагнитный
  • Импульсный индуктивный двигатель
  • Магнитоплазмодинамический двигатель
  • Безэлектродный плазменный двигатель
Электротермический
  • Импульсный плазменный двигатель
  • Вакуумный дуговой двигатель
  • Двухслойное подруливающее устройство Helicon
  • Ракета Arcjet
  • Ракета Resistojet
  • СВЧ электротермический двигатель
  • ВАСИМР
Другой
  • Электродвигатель, дышащий атмосферой
  • Электродвигатель большой мощности
  • MagBeam
  • Массовый драйвер
Ядерная двигательная установка
Закрытая система
  • Прямой привод Fusion Drive
  • Ядерная электрическая ракета
  • Ядерная тепловая ракета

    • Радиоизотоп
    • Соленая вода
    • Газовое ядро
    • «Лампочка»
  • Ядерная фотонная ракета
Открытая система
  • Ядерный импульсный двигатель

    Катализированный антивеществом

  • Импульсная ядерная тепловая ракета
  • Термоядерная ракета

    ПВРД Bussard

  • Осколочная ракета

    Деление паруса

Внешнее питание
  • Силовая установка с лучевым приводом
  • Привязи
Связанные понятия
  • Орбитальная механика
  • Орбитальный маневр
  • Помощь гравитации
  • Помощь в аэрогравитации
  • Эффект Оберта
  • Космический запуск
  • Нераакетный запуск в космос
  • Аэробрейкинг
  • Захват
  • Вход в атмосферу
  • Антигравитационный
  • Варп-привод
  • Алькубьерре драйв
Портал космических полетов

Принцип работы

Атомы топлива впрыскиваются в камеру нагнетания и ионизируются за счет бомбардировки электронами, создавая плазму. Существует несколько способов производства быстрых электронов для разряда: электроны могут испускаться из электронной пушки и ускоряться за счет разницы потенциалов с анодом (ионный двигатель Кауфмана); электронам передается ускорения от осциллирующего электрического поля, индуцированного электромагнитом переменного тока, что приводит к самостоятельному разряду и отключению катодов (радиочастотный ионный двигатель) и посредством нагрева токами сверхвысокой частоты. Положительно заряженные ионы рассеиваются в вытяжной системе камеры (2-3 мультиапертурных сетки). После того, как ионы попадают в экранирующий слой плазмы в отверстии сетки, им за счет разницы потенциалов между первой и второй сетками (экранной сеткой и решеткой ускорителя) передается ускорение. Ионы посредством мощного электрического поля направляются через заборное отверстие. Конечная энергия иона определяется потенциалом плазмы, который, как правило, несколько превышает напряжение экранной сетки.

Конструкция ионного двигателя с сеткой

Отрицательное напряжение решетки ускорение не позволяет электронам из пучка плазмы, выходящей из двигателя, вернуться обратно к разряженной плазме. Это может не сработать из-за недостаточного отрицательного напряжения в сетке, что часто происходит в конце срока службы ионных двигателей. Выброшенные ионы двигают космический аппарат вперед согласно третьему закону Ньютона. Электроны с низкой энергией излучаются из отдельного катода – нейтрализатора, и попадают в пучок ионов для обеспечения равного количества положительных и отрицательных выбрасываемых частиц. Нейтрализация необходима для того, чтобы предотвратить получение космическим аппаратом результирующего отрицательного заряда, что может притянуть ионы обратно к аппарату и заглушить двигатель.

Миссии

Действующие миссии

  • Starlink — проект компании Илона Маска SpaceX по выведению спутников на околоземную орбиту для создания глобальной сети интернет. Технология используется для маневрирования спутников и избежания их столкновения с космическим мусором[источник не указан 902 дня].
  • Artemis
  • Хаябуса-2
  • BepiColombo. Запущен 20 октября 2018 года. ЕКА использует ионный двигатель в этой меркурианской миссии, наряду с гравитационными манёврами и химическим двигателем для перехода на орбиту вокруг Меркурия в качестве искусственного спутника. На аппарате работают самые мощные на сегодняшний день 4 ионных двигателя суммарной тягой 290 мН.
  • Тяньхэ — базовый модуль Китайской космической станции, запущенный 29 апреля 2021, имеет 4 ионных двигателя для коррекции орбиты.

Завершённые миссии

  • SERT (англ. Space Electric Rocket Test, рус. Тест Космического Электрического Двигателя — программа NASA, в которой на спутниках впервые был использован ионный двигатель)
  • Deep Space 1
  • Hayabusa (вернулся на Землю 13 июня 2010 года)
  • Smart 1 (завершил миссию 3 сентября 2006 года, после чего был сведён с орбиты)
  • GOCE (после исчерпания запасов рабочего тела сошёл с орбиты)
  • LISA Pathfinder (ЕКА) использовал ионные двигатели в качестве вспомогательных для точного контроля высоты; деактивирован 30 июня 2017.
  • Dawn. 1 ноября 2018 года аппарат исчерпал все запасы топлива для маневрирования и ориентации, его миссия, длившаяся 11 лет, была официально завершена.

Планируемые миссии

  • Международная космическая станция. По состоянию на март 2011 года планировалась доставка на МКС электромагнитного двигателя (VASIMR) Ad Astra VF-200 с мощностью в 200 кВт VASIMR. VF-200 представляет собой версию VX-200. Поскольку доступная электрическая мощность на МКС меньше 200 кВт, проект ISS VASIMR включал в себя систему батарей, которая накапливала энергию для 15 минут работы двигателя.
  • Solar Orbiter.

Нереализованные миссии


Компьютерная модель Прометея-1

NASA ввело проект «Прометей», для которого разрабатывался мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагалось, что такие двигатели в количестве восьми штук могли бы разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В 2005 году программа была закрыта. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Проект Джефри Лэндиса

Geoffrey A. Landisruen предложил проект межзвёздного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что даёт некоторое преимущество по сравнению с чисто космическим парусом. В настоящее время данный проект неосуществим из-за технических ограничений — например, он потребует силы тяги от ионных двигателей в 1570 Н при нынешних 20—250 мН(по другим данным рекорд тяги у современных ионных двигателей 5,4 Н).

История

Ионный двигатель является первым хорошо отработанным на практике типом электрического ракетного двигателя. Концепция ионного двигателя была выдвинута в 1917 году Робертом Годдардом, а в 1954 году Эрнст Штулингерruen детально описал эту технологию, сопроводив её необходимыми вычислениями.

В 1955 году Алексей Иванович Морозов написал, а в 1957 году опубликовал в ЖЭТФ статью «Об ускорении плазмы магнитным полем». Это дало толчок к исследованиям, и уже в 1964 году на советском аппарате «Зонд-2» первым таким устройством, выведенным в космос, стал плазменно-эрозионный двигатель конструкции А. М. Андрианова. Он работал в качестве двигателя ориентации с питанием от солнечных батарей.

Первый американский функционирующий ионный электростатический двигатель (создан в США в НАСА John H. Glenn Research Center at Lewis Field) был построен под руководством Гарольда Кауфманаruen в 1959 году.
В 1964 году прошла первая успешная демонстрация ионного двигателя в суборбитальном полёте (SERT-1). Двигатель успешно работал в течение запланированной 31 минуты.
В 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе (SERT II). Малая тяга и низкий КПД надолго отвадили американских конструкторов от применения электрических и ионных двигателей.

Тем временем в Советском Союзе продолжалась разработка и улучшались характеристики. Были разработаны и применялись различные типы ионных двигателей на различных типах космических аппаратов. Двигатели СПД-25 тягой 25 миллиньютон, СПД-100, и другие серийно устанавливались на советские спутники с 1982 года.

В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя — 10 ноября  г.). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003 года, и японский аппарат Хаябуса, запущенный к астероиду Итокава в мае 2003 года.

Следующим аппаратом НАСА, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначен для изучения Весты и Цереры и несёт три двигателя NSTAR, успешно испытанных на Deep Space 1.

Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверхнизкую околоземную орбиту высотой около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник.

Преимущества ионного двигателя для космического корабля

Ионы на выходе из двигателя разгоняются до очень высоких скоростей. В своем максимуме они могут достигать 210 км/с. При этом, химические ракетные двигатели не способны достигать и 10 км/с, находясь в диапазоне 3-5 км/с.

В нашем Telegram-чате все говорят про варп-двигатель, но давайте сначала с ионным разберемся.

Возможность достижения большого удельного импульса позволяет очень сильно сократить расход реактивной массы ионизированного газа в сравнении с аналогичным показателем для традиционного химического топлива. А еще, ионный двигатель может непрерывно работать более трех лет. Энергия, которая нужна для ионизации топлива берется от солнечных батарей — в космосе с этим проблем нет.

Если спешить с ускорением некуда, то ионный двигатель станет отличным вариантом.

Поиск решения

Как уже упоминалось, основная проблема ионных двигателей заключается в очень малой тяге, однако у ученых уже есть некоторые идеи для ее увеличения.

Первая — значительно увеличить количество электричества и силу магнитного поля, используемого для ускорения ионов. Для этого, вместо солнечных панелей, НАСА рассматривало возможность создания ионного двигателя, работающего на ядерном реакторе. Агентство планировало миссию по изучению ледяных спутников Юпитера. Новый ионный двигатель «NEXIS», работающий на ядерном реакторе, должен был доставить аппарат по очереди: к Ганимеду, Каллисто и, затем, к Европе.

Ионный двигатель «NEXIS»

Космический аппарат планировалось вывести на орбиту Земли по частям, произвести сборку, после чего запустить к Юпитеру с помощью 8 ионных двигателей. Полет до точки назначения длился бы от 5 до 8 лет. На изучение Каллисто, а затем Ганимеда отводилось 6 месяцев, затем аппарат должен был выйти на орбиту Европы и через 30 дней покинуть место назначения. При удачном течении экспедиции, аппарат мог бы посетить еще орбиту Ио — еще одного спутника Юпитера. Миссия была отменена в 2005 году.

Сравнение с обычными ракетными двигателями

В обычных двигателях вы должны загрузить массу, которую нужно выбросить, и энергию, чтобы выбросить ее. В то время как с ионными двигателями на борту находится только масса, которая должна быть выброшена, энергия выброса может быть получена на месте с помощью солнечных батарей или поступать от радиоизотопного термоэлектрического генератора .

Обычные ракетные двигатели обеспечивают значительное ускорение за короткое время, но для этого используют большое количество топлива . Ракетные двигатели должны выдерживать огромные нагрузки давления и температуры , что делает их тяжелыми. Кроме того, сам резерв топлива должен быть продвинут так же, как и космический корабль  ; в результате космический корабль должен забрать с собой еще больше топлива (см . уравнение Циолковского ).

Ионные двигатели, которые создают низкую движущую силу, но в течение очень длительного периода времени, особенно экономичны. На килограмм нейтрального газа на борту в качестве опорной массы они производят гораздо больше работы, чем у обычных ракетных двигателей. Следовательно, через некоторое время, которое, по общему признанию, нельзя не отметить, они могут придать космическому аппарату такую ​​же скорость за счет гораздо меньшего расхода поддерживающей массы . Тогда этот автомобиль сможет нести меньшую опорную массу . Ионные двигатели также намного легче (около десяти кг), что обеспечивает дополнительную экономию тяги.

Производство ионов

Принцип работы газового ионного источника, красным — катоды, синим — анод.

Два основных метода получения ионов:

  • контактная ионизация: топливо испаряется и циркулирует в металлической структуре, нагретой до высокой температуры. Контакт с металлом, который имеет высокую рабочую функцию, оторвет электроны от атомов газа.
  • ионизация путем генерации плазмы: источником HF или электрической дугой.

Затем ионы будут сфокусированы в форме луча с использованием первой серии электродов. Затем другая серия электродов или решетка будет ускорять их вне двигателя. Наконец, за нейтрализацию луча отвечает электронная эмиссионная система.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector